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LINEAR REGRESSION AND

CORRELATION

Chapter

12
• demonstrate how the correlation coefficient is 

calculated and interpreted.
• show how least-squares regression models are fit to

data.
• examine the relationship between the regression

line, sample correlation, and the prediction of 
means.

Objectives
In this chapter we study correlation and regression. We will

12.1 Introduction
In this chapter we discuss some methods for analyzing the relationship between two
quantitative variables, X and Y. Linear regression and correlation analysis are tech-
niques based on fitting a straight line to the data.

Examples

Data for regression and correlation analysis consist of pairs of observations (X, Y).
Here are two examples.

Amphetamine and Food Consumption Amphetamine is a drug that suppresses ap-
petite. In a study of this effect, a pharmacologist randomly allocated 24 rats to three
treatment groups to receive an injection of amphetamine at one of two dosage lev-
els, or an injection of saline solution. She measured the amount of food consumed
by each animal in the 3-hour period following injection.The results (gm of food con-
sumed per kg body weight) are shown in Table 12.1.1.1

Figure 12.1.1 shows a scatterplot of

against

X = Dose of amphetamine

Y = Food consumption

Example
12.1.1

• show how to test whether a regression relationship
is statistically significant.

• extend regression ideas to multiple regression,
analysis of covariance, and logistic regression.
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Table 12.1.1 Food consumption (Y) of rats (gm/kg)

X = Dose of amphetamine(mg/kg)

0 2.5 5.0

112.6 73.3 38.5

102.1 84.8 81.3

90.2 67.3 57.1

81.5 55.3 62.3

105.6 80.7 51.5

93.0 90.0 48.3

106.6 75.5 42.7

108.3 77.1 57.9

Mean 100.0 75.5 55.0

SD 10.7 10.7 13.3

No. of animals 8 8 8

0
X =  Dose of amphetamine (mg/kg)
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Figure 12.1.1 Scatterplot
of food consumption
against dose of
amphetamine

Arsenic in Rice Environmental pollutants may enter the food supply as contaminants
leach into the soil from which the food is grown. It is hypothesized that naturally oc-
curring silicon in rice plants may inhibit the absorption of some pollutants. In a
study to investigate compounds that mitigate arsenic absorption in rice, researchers
sampled 32 rice plants and measured the concentration of arsenic in the polished
rice (μg/kg rice) as well as the concentration of silicon in the straw (g/kg straw) of
each plant.2 Figure 12.1.2 shows a scatterplot of

Y = rice arsenic concentration

Example
12.1.2

*In many dose-response relationships, the response depends linearly on log(dose) rather than on dose itself. We
have chosen a linear portion of the dose-response curve to simplify the exposition.

The scatterplot suggests a definite dose-response relationship, with larger values of
X tending to be associated with smaller values of Y.* �
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Figure 12.1.2 Scatterplot
of rice arsenic
concentration against straw
silicon concentration

against

The scatterplot suggests that higher straw silicon concentrations (X) tend to be
associated with lower rice arsenic concentrations (Y). �

12.2 The Correlation Coefficient
Suppose we have a sample of n pairs for which each pair represents the measurements
of two variables, X and Y. If a scatterplot of Y versus X shows a general linear trend,
then it is natural to try to describe the strength of the linear association. In this section
we will learn how to measure the strength of linear association using the correlation
coefficient.The following example illustrates the kind of situation we wish to consider.

Length and Weight of Snakes In a study of a free-living population of the snake Vipera
bertis, researchers caught and measured nine adult females.3 Their body lengths and
weights are shown in Table 12.2.1 and are displayed as a scatterplot in Figure 12.2.1.
The number of observations is  . �

The scatterplot shown in Figure 12.2.1 shows a clear upward trend. We say that
weight shows a positive association with length, indicating that greater lengths are
associated with greater weights.Thus, snakes that are longer than the average length
of tend to be heavier than the average weight of . The line superim-
posed on the plot is called the least-squares line or fitted regression line of Y on X.
We will learn how to compute and interpret the regression line in Section 12.3.

Measuring Strength of Linear Association

How strong is the linear relationship between snake length and weight? Are the
data points tightly clustered around the regression line, or is the scatter loose? To
answer these questions we will compute the correlation coefficient, a scale-invariant
numeric measure of the strength of linear association between two quantitative
variables. Being scale invariant means that the correlation coefficient is unaffected

yq = 152xq = 63

n = 9

Example
12.2.1

X = straw silicon concentration
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Figure 12.2.1 Body length and weight of nine
snakes with fitted regression line

by any changes in measurement scales. That is, the correlation between length and
weight will be the same whether measured in centimeters and grams or inches
and pounds.To understand how the correlation coefficient works, consider again the
snake length and weight example. Rather than plotting the original data,
Figure 12.2.2 plots the standardized data (z-scores) displayed in Table 12.2.2; note
that this plot looks identical to our original plot except now our scales are unit-less.

Dividing the plot into quadrants based on the sign of the standardized score, we
see that most of these points fall into the upper-right and lower-left quadrants.
Points falling in these quadrants will have standardized scores whose products are
positive. Likewise, points falling in the upper-left and lower-right quadrants will
have standardized score products that are negative. Computing the sum of these
products provides a numeric measure of where our points fall (i.e., which quadrants
are dominant). In our case, since there is a positive association between length and
weight, most points fall in the positive product quadrants; thus, the sum of the

Table 12.2.1

Length X (cm) Weight Y (g)

60 136

69 198

66 194

64 140

54 93

67 172

59 116

65 174

63 145

Mean 63 152

SD 4.6 35.3

−2 −1
Standardized length

0 1 2

−2

0

−1

1

2 z-score for x is −
z-score for y is +

Product is −

z-score for x is −
z-score for y is −

Product is +

z-score for x is +
z-score for y is −

Product is −

z-score for x is +
z-score for y is +

Product is +
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Figure 12.2.2 Scatterplot
of standardized weight
versus standardized length
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The correlation coefficient, r

r =
1

n - 1 a
n

i=1
a x - xq
sx

b a y - yq
sy

b

From this formula it is clear that X and Y enter r symmetrically; therefore, if we
were to interchange the labels X and Y of our variables, r would remain unchanged.
In fact, this is one of the advantages of the correlation coefficient as a summary sta-
tistic: In interpreting r, it is not necessary to know (or to decide) which variable is la-
beled X and which is labeled Y.

Table 12.2.2 Standardized snake weights, lengths, and their products

Weight Length
Standardized

weight
Standardized

length

Product of 
standardized

values

X Y
zx =

x - xq
sx

zy =
y - yq
sy zxzy

60 136 -0.65 Á -0.45 Á 0.29 . . .

69 198 1.29 . . . 1.30 . . . 1.68 . . .

66 194 0.65 . . . 1.19 . . . 0.77 . . .

64 140 0.22 . . . -0.34 Á -0.07 Á
54 93 -1.94 Á -1.67 Á 3.24 . . .

67 172 0.86 . . . 0.57 . . . 0.49 . . .

59 116 -0.86 Á -1.02 Á 0.88 . . .

65 174 0.43 . . . 0.62 . . . 0.27 . . .

63 145 0.00 . . . -0.20 Á 0.00 . . .

Sum 567 1368 0.00 0.00 7.5494

Mean 63.000 152.000 0.00 0.00

SD 4.637 35.338 1.00 1.00

Values in the table are truncated for ease of reading. Because the summary values will be used
in subsequent calculations, they include more digits than one would typically report when
following our rounding conventions.

products of standardized scores is positive. If a negative relationship were present,
most of the points would fall in the negative quadrants and the sum would be nega-
tive. And, if there were no linear relationship, the points would fall in evenly in all
four quadrants so that the positive and negative products would balance and their
sum would be zero.

The correlation coefficient is based on this sum. It is computed as the average
product of standardized scores (using rather than n to compute the average):*n - 1

*By substituting for sx and for sy, the equation for the

correlation coefficient can be rewritten as .r = a
n
i=11x - xq21y - yq24an

i=11x - xq22an
i=11y - yq22

4an
i=1 1y - yq22/1n - 124an

i=1 1x - xq22/1n - 12



Section 12.2 The Correlation Coefficient 485

1.0 0.8 0.4 0.0 −0.4 −0.8 −1.0

1.0 −1.0 0.0 0.0 0.0 0.0 0.0

Figure 12.2.3 Scatterplots
of data with a variety of
sample correlation values

Interpreting the Correlation Coefficient

Mathematically, the correlation coefficient is unit free and always between and
1. The sign of the correlation indicates the sign of the relationship and matches the
sign of the slope of the regression line: positive (increasing) or negative (decreas-
ing). The closer the correlation is to or 1, the stronger the linear relationship be-
tween X and Y. A correlation equal to or 1 indicates a perfect linear relationship
between the two variables—a scatterplot of such data would display the data falling
exactly on a straight line. Interestingly, a correlation of zero does not necessarily
mean that there is no relationship between X and Y—it only means that there is no
linear relationship between X and Y. The preceding computation of the correlation
indicates that the sum of the products of standardized values will be zero whenever
the positive and negative products balance; this can happen in many ways. Figure
12.2.3 displays several examples with a variety of correlation coefficient values.

-1
-1

-1

Length and Weight of Snakes In Table 12.2.2 we showed that for the snake data the
sum of the products of the standardized scores is 7.5494. Thus, the correlation coef-
ficient for the lengths and weights of our sample of nine snakes is about 0.94.

�

In this example we may also refer to the value 0.94 as the sample correlation, since
the lengths and weights of these nine snakes comprise a sample from a larger popu-
lation.The sample correlation is an estimate of the population correlation (often de-
noted by the Greek letter “rho,” )—in this case the correlation coefficient for the
entire population of adult female Vipera bertis snakes. In order to regard the sample
correlation coefficient r as an estimate of a population parameter, it must be reason-
able to assume that both the X and the Y values were selected at random, as in the
following bivariate random sampling model:

r

r =
1

9 - 1
* 7.5494 L 0.94

Example
12.2.2

Bivariate Random Sampling Model:
We regard each pair (xi, yi) as having been sampled at random from a popula-
tion of (x, y) pairs.

In the bivariate random sampling model, the observed X’s are regarded as a random
sample and the observed Y’s are also regarded as a random sample, so that the mar-
ginal statistics , , sx, and sy are estimates of corresponding population values μx, μy,

x, and y.ss

yqxq
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For many investigations the random sampling model is reasonable, but the addi-
tional assumption of a bivariate random sampling model is not. This is generally the
case when the values of X are specified by the experimenter as in Example 12.1.1
where the researchers assigned rats to one of three dosages of amphetamine. This
type of sampling model is called the random subsampling model and is defined in
Section 12.4. In these cases the sample correlation coefficient is not an appropriate
estimate of the population correlation.

Inference Concerning Correlation

We have described how the correlation coefficient describes a data set within the bi-
variate random sampling model. Now we shall consider statistical inference based
on r for data from this model. Consider the following example.

Testing the Hypothesis 

In some investigations it is not a foregone conclusion that there is any relationship
between X and Y. It then may be relevant to consider the possibility that any appar-
ent trend in the data is illusory and reflects only sampling variability. In this situa-
tion it is natural to formulate the null hypothesis

H0: X and Y are uncorrelated in the population.

or, equivalently

H0: There is no linear relationship between X and Y.

A t test of H0 is based on the test statistic

Critical values are obtained from Student’s t distribution with

The following example illustrates the application of this t test.

Blood Pressure and Platelet Calcium It is suspected that calcium in blood platelets may
be related to blood pressure. As part of a study of this relationship, researchers re-
cruited 38 subjects whose blood pressure was normal (that is, not abnormally elevat-
ed).4 For each subject two measurements were made: pressure (average of systolic
and diastolic measurements) and calcium concentration in the blood platelets. The
data are shown in Figure 12.2.4. The sample size is and the sample correla-
tion is .

Is there evidence that blood pressure and platelet calcium are linearly related?
We will test the null hypothesis

against the nondirectional alternative

These hypotheses are translations of the verbal hypotheses

H0: Platelet calcium is not linearly related to blood pressure.

HA: Platelet calcium is linearly related blood pressure.

HA:r Z 0

H0:r = 0

r = 0.5832
n = 38

Example
12.2.3

df = n - 2

ts = rC n - 2

1 - r2

H0:r = 0
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Figure 12.2.4 Blood
pressure and platelet
calcium for 38 persons with
normal blood pressure

Let us choose . The test statistic is

From Table 4 with , we find . Thus, we find
(since HA is nondirectional) and we reject H0. The

data provide strong evidence that platelet calcium is linearly related to blood
pressure ( , , ). �

Why ? The t statistic in the hypothesis test for the preceding population cor-
relation coefficient has an associated . The origin of the is easy to
explain. Any two points determine a straight line, yet such a small data set ( )
provides no information about the inherent variability in the scatter of the points (or,
equivalently, the strength of association between X and Y). It is not until we observe
a third point that we are able to begin estimating the strength of any relationship. As
in our earlier contexts related to t distributions and F-distributions (Chapters 6, 7, 8,
and 11), the degrees of freedom is the number of pieces of information provided by
the data about the “noise” from which the investigator wants to extract the “signal.”

Confidence Interval for (Optional)

If the sample size is large, it is possible to construct a confidence interval for . The
sampling distribution of the sample correlation coefficient, r, is skewed, so in order
to construct the confidence interval we apply what is known as the Fisher transfor-
mation of r:

where ln is the natural logarithm (base e). We can then construct a 95% confidence 

interval for as

zr ; 1.96
11n - 3

1
2

 ln c1 + r
1 - r

d

zr =
1
2

  ln c 1 + r
1 - r

d

r

r

n = 2
n - 2df = n - 2

n - 2

P-value 6 0.001df = 36ts = 4.308

P-value 6 0.0005 * 2 = 0.001
t40,0.0005 = 3.551df = n - 2 = 36 L 40

ts = 0.5832C 38 - 2

1 - 0.58322 = 4.308

a = 0.05
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Finally, we can convert the limits of the confidence interval for into a 

confidence interval for by solving for in the equations given by

Intervals with other confidence levels are constructed analogously. For example, to
construct a 90% confidence interval, replace 1.96 with 1.645. The construction of a
confidence interval for a correlation coefficient is illustrated in Example 12.2.4.

Blood Pressure and Platelet Calcium For the data of Example 12.2.3 the sample size is
and the sample correlation is .The Fisher transformation of r gives

A 95% confidence interval for is

or , which is (0.3360,0.9986).
Setting

Setting

We are 95% confident that the correlation between blood pressure and platelet
calcium in the population is between 0.32 and 0.76.Thus, a 95% confidence interval
for is (0.32, 0.76). �

Correlation and Causation

We have noted earlier that an observed association between two variables does not
necessarily indicate any causal connection between them. It is important to remem-
ber this caution when interpreting correlation. The following example shows that
even strongly correlated variables may be causally unrelated.

Reproduction of an Alga Akinetes are sporelike reproductive structures produced by
the green alga Pithophora oedogonia. In a study of the life cycle of the alga, re-
searchers counted akinetes in specimens of alga obtained from an Indiana lake on
26 occasions over a 17-month period. Low counts indicated germination of the
akinetes. The researchers also recorded the water temperature and the photoperiod
(hours of daylight) on each of the 26 occasions. The data showed a rather strong
negative correlation between akinete counts and photoperiod; the correlation co-
efficient was . The researchers, however, recognized that this observedr = -0.72

Example
12.2.5

r

1
2

  ln c 1 + r
1 - r

d = 0.9986  gives r =
e210.99862 - 1

e210.99862 + 1
= 0.76

1
2

  ln c 1 + r
1 - r

d = 0.3360  gives r =
e210.33602 - 1

e210.33602 + 1
= 0.32

0.6673 ; 0.3313

0.6673 ; 1.96
1138 - 3

1
2

 ln c1 + r
1 - r

d

zr =
1
2

  ln c 1 + 0.5832
1 - 0.5832

d =
1
2

  ln c 1.5832
0.4168

d = 0.6673

r = 0.5832n = 38
Example
12.2.4

1
2

  ln c 1 + r
1 - r

d = zr ; 1.96
11n - 3

rr

1
2

 ln c1 + r
1 - r

d
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correlation might not reflect a causal relationship. Longer days (increasing photope-
riod) also tend to bring higher temperatures, and the akinetes might actually be re-
sponding to temperature rather than photoperiod. To resolve the question, the
researchers conducted laboratory experiments in which temperature and photope-
riod were varied independently; these experiments showed that temperature, not
photoperiod, was the causal agent.5 �

As Example 12.2.5 shows, one way to establish causality is to conduct a con-
trolled experiment in which the putative causal factor is varied and all other factors
are either held constant or controlled by randomization. When such an experiment
is not possible, indirect approaches using statistical analysis can shed some light
on potentially causal relationships. (One such approach will be illustrated in
Example 12.8.3.)

Cautionary Notes

To describe the results of testing a correlation coefficient, investigators often use the
term significant, which can be misleading. For instance, a statement such as “A high-
ly significant correlation was noted” is easily misunderstood. It is important to re-
member that statistical significance simply indicates rejection of a null hypothesis; it
does not necessarily indicate a large or important effect. A “significant” correlation
may in fact be quite a weak one; its “significance” means only that it cannot easily be 

explained away as a chance pattern. From the formula we can see 

that for a fixed value of r, ts increases as n increases. Thus, if the sample size is large
enough, ts will be large enough for the correlation to be “significant” no matter how
small r is. It is always wise to assess the practical significance of any result by consid-
ering a confidence interval for the population parameter of interest.

The correlation coefficient is highly sensitive to extreme points. For example,
Figure 12.2.5(a) shows a scatterplot of 25 points with a correlation of ; one
of the points has been plotted as a blue dot. Figure 12.2.5(b) shows the same points,
except that the point plotted as a blue dot has been changed. The change of that
single point causes the correlation coefficient to climb from 0.2 to 0.6. Figure
12.2.5(c) shows a third version of the data. In this case . These three
graphs illustrate how a single point can greatly influence the size of the correlation
coefficient. It is important to always plot the data before using r (or any other sta-
tistic) to summarize the data.

r = -0.1

r = 0.2

ts = rA n - 2

1 - r2
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(c) r = −0.1(b) r = 0.6(a) r = 0.2

Figure 12.2.5 The effect
of outliers on the sample
correlation coefficient
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X Y

6 6

1 7

3 3

2 2
5 14

Mean 3.4 6.4

SD 2.1 4.7

Exercises 12.2.1–12.2.10

12.2.1 Arrange the following plots in order of their cor-
relations (from closest to to closest to ).+1-1

(e)

X

Y

(d)
X

Y

(c)

X

Y

(b)
X

Y

X
(a)

Y

12.2.2 Consider the following data.

(a) Plot the data. Does there appear to be a relationship
between X and Y? Is it linear or nonlinear? Weak or
strong?

(b) Compute the sample correlation coefficient between
X and Y.

(c) Is there significant evidence that X and Y are corre-
lated? Conduct a test using .

12.2.3 In a study of natural variation in blood chemistry,
blood specimens were obtained from 284 healthy people.
The concentrations of urea and of uric acid were meas-
ured for each specimen, and the correlation between
these two concentrations was found to be .
Test the hypothesis that the population correlation coef-
ficient is zero against the alternative that it is positive.6

Let .

12.2.4 Researchers measured the number of neurons in
the CA1 region of the hippocampus in the brains of eight
persons who had died of causes unrelated to brain func-
tion.They found that these data were negatively correlat-
ed with age. The sample value of r was .7

(a) Is this correlation coefficient significantly different
from zero? Conduct a test using .

(b) Suppose in part (a) you found that the correlation
does significantly differ from zero. Does this provide
evidence that aging is a cause for CA1 neuron loss?
If not, what could be said? Briefly explain.

a = 0.10

-0.63

a = 0.05

r = 0.2291

a = 0.05
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12.2.5 Twenty plots, each meters, were randomly
chosen in a large field of corn. For each plot, the plant
density (number of plants in the plot) and the mean cob
weight (gm of grain per cob) were observed. The results
are given in the table.8

10 * 4

12.2.7 To investigate the dependence of energy expen-
diture on body build, researchers used underwater
weighing techniques to determine the fat-free body
mass for each of seven men.They also measured the total
24-hour energy expenditure for each man during condi-
tions of quiet sedentary activity. The results are shown in
the table.10 (See also Exercise 12.5.5.)

PLANT 
DENSITY X

COB 
WEIGHT Y

PLANT 
DENSITY X

COB 
WEIGHT Y

137 212 173 194

107 241 124 241

132 215 157 196

135 225 184 193

115 250 112 224

103 241 80 257

102 237 165 200

65 282 160 190

149 206 157 208

85 246 119 224

Preliminary calculations yield the following results:

(a) Is there significant evidence for a linear relationship
between cob weight and plant density? Carry out an
appropriate test using .

(b) Is this study an observational study or an experi-
ment?

(c) Farmers are interested in whether manipulating
plant density can alter cob weight. Could these data
be used to answer this question? If not, what could
be said? Briefly explain.

12.2.6 Laetisaric acid is a compound that holds promise
for control of fungus diseases in crop plants. The accom-
panying data show the results of growing the fungus
Pythium ultimum in various concentrations of laetisaric
acid. Each growth value is the average of four radial
measurements of a P. ultimum colony grown in a petri
dish for 24 hours; there were two petri dishes at each
concentration.9

(a) Is there significant evidence for a linear relationship
between fungus growth and acid concentration?
Carry out an appropriate test using .

(b) Is this study an observational study or an experiment?
(c) It is suggested that acid could be used to retard

fungus growth. Could these data be used to verify
this claim? If not, what could be said? Briefly
explain.

a = 0.05

a = 0.05

r = -0.94180

sx = 32.61332 sy = 24.95448

xq = 128.05    yq = 224.10

LAETISARIC ACID 
CONCENTRATION 

X (mG/ml)

FUNGUS 
GROWTH 

Y (mm)

0 33.3

0 31.0

3 29.8

3 27.8

6 28.0

6 29.0

10 25.5

10 23.8

20 18.3

20 15.5

30 11.7

30 10.0

Mean 11.500 23.642

SD 10.884 7.8471

r = -0.98754

SUBJECT
FAT-FREE 

MASS X (kg)
ENERGY EXPENDITURE

Y (kcal)

1 49.3 1,894

2 59.3 2,050

3 68.3 2,353

4 48.1 1,838

5 57.6 1,948

6 78.1 2,528

7 76.1 2,568

Mean 62.400 2,168.429

SD 12.095 308.254

r = 0.98139

(a) The correlation between energy expenditure and
fat-free mass is very large (near 1). It is 0.98139, but
the sample size is quite small, only 7. Is there
enough evidence to claim the correlation is differ-
ent from zero? Carry out an appropriate test using

.

(b) Is this study an observational study or an experiment?

a = 0.05
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there seem to be a linear trend in the data? Is it in-
creasing or decreasing? Is it weak or strong?

(b) Examining the plot, we see there is a mother with a
maternal hair level around 4.2 �g/g. If her child’s
basal Ca pump activity were changed from about
2800 to about 2000 nmol/mg/hr, would the sample
correlation increase or decrease?

(c) Is there evidence that newborn basal Ca pump activ-
ity linearly decreases with maternal hair level? Carry
out an appropriate test using .

(d) In part (c) you should have found that there is strong
evidence for a linearly decreasing relationship be-
tween X and Y. Explain how the evidence can be so
strong even though the graph displays substantial
scatter and the sample correlation is not close to .

(e) Based on your answer to part (c) and the design of
this study, what can we say regarding the primary
research question: Is there statistical evidence that
maternal mercury exposure measured by mercury
deposits in hair (�g/g) affects newborn’s basal Ca
pump activity (nmol/mg/hr)?

12.2.9 For each of the following examples, explain
whether or not it is reasonable to treat the sample corre-
lation coefficient, r, as an estimate of a population corre-
lation coefficient . Briefly justify your answer.

(a) The blood chemistry data from Exercise 12.2.3.

(b) The CA1 neuron data from Exercise 12.2.4.

(c) The cob weight data from Exercise 12.2.5.

(d) The fungus growth data from Exercise 12.2.6.

(e) The basal Ca pump activity from Exercise 12.2.8.

12.2.10 (optional) For each of the following data sets,
compute a 95% confidence interval for the population
correlation coefficient.

(a) The blood chemistry data from Exercise 12.2.3.

(b) The cob weight data from Exercise 12.2.5.

(c) The energy expenditure data from Exercise 12.2.7.

r

-1

a = 0.05

(c) Persons who exercise could increase their fat-free
mass. Could these data be used to claim that their en-
ergy expenditure would also increase? If not, what
could be said? Briefly explain.

12.2.8 Cellular ability to regulate homeostasis is meas-
ured by basal Ca pump activity. Deregulation of calcium
homeostasis can trigger serious effects of cell functioning.
Can maternal mercury exposure measured by mercury
deposits in hair (�g/g) affect newborn’s basal Ca pump
activity (nmol/mg/hr)? The following data summaries and
graph are from a human study involving a sample of 75
newborns and their mothers.11
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(a) It is a good habit to always plot our data before
analysis. Examining the preceding scatterplot, does

r = -0.45289

sx = 0.61166 sy = 611.34876

xq = 2.11183 yq = 3196.8196

12.3 The Fitted Regression Line
In Section 12.2 we learned how the correlation coefficient describes the strength of
linear association between two numeric variables, X and Y. In this section we will
learn how to find and interpret the line that best summarizes their linear relationship.

Ocean Temperature Consider a data set for which there is a perfect linear relationship
between X and Y for example, temperature measured in and

. Figure 12.3.1 displays 20 weekly ocean temperatures (in both °C
and °F) for a coastal California city along with a line that perfectly describes the re-
lationship:* . A summary of the data appears in Table 12.3.1.12y = 32 + 9

5 x

Y = Fahrenheit
X = Celsius

Example
12.3.1

*This equation is the Celsius to Fahrenheit conversion formula.
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Figure 12.3.1 Scatterplot
of temperature
in °F versus 
temperature in °C. The
mean value is
denoted with a ▲

(xq,yq)

X = ocean
Y = ocean

Table 12.3.1 Summary of water temperature data

X = temperature(°C) Y = temperature(°F)

Mean 15.43 59.77

SD 1.60 2.88

Because X and Y are measuring the same variable (temperature), it stands to
reason that a water specimen that is 1 SD above average in °C ( ) will also
be 1 SD above average in °F ( ). Combined, these values can describe the
slope of the line that fits these data exactly:

In this example we also happen to know the equation of the line that describes
the Celsius to Fahrenheit conversion. The slope of this line is , the same
value we found previously. �

The SD Line

In perfect linear relationships (i.e., when ) the line that fits the data exactly
will have slope (the sign of the slope matches the sign of the correlation coef-
ficient) and passes through the point . This line is sometimes referred to as the 
SD line. Our previous temperature example displays this property. But what about
situations in which r is not exactly , that is, when the relationship between X and
Y is less than perfectly linear?

Arsenic in Rice In Section 12.1 we observed a scatterplot indicating that the
amount of arsenic in rice and silicon in rice straw appears to be linearly related

. Figure 12.3.2 displays a scatterplot of these data along with the SD
line (dashed line). At first glance the SD line appears to be a good fit to these data;
however, further investigation suggests otherwise. Suppose we wanted to estimate
the mean arsenic concentration in rice for plants with straw silicon concentrations of

(r = -0.566)

Example
12.3.2

;1

(xq,yq)
;sy/sx

r = ;1

9/5 = 1.80

rise
run

=
sy

sx
=

2.88
1.60

= 1.80

sy = 2.88
sx = 1.60
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15 g/kg. The SD line suggests an estimated mean rice arsenic concentration of ap-
proximately 190 �g/kg. Another way to estimate this value would be to simply
use the mean rice arsenic concentration for plants in our sample that have straw sil-
icon concentrations around 15 g/kg. The mean arsenic concentration in rice for
straw silicon concentrations between 10 and 20 g/kg is 158.6 �g/kg (denoted by a ▲
on the graph), which is considerably less than the 190 �g/kg value given by the SD
line. Similarly, for plants with straw silicon concentrations around 45 g/kg, the
SD line indicates an arsenic level of about 55 �g/kg while the mean arsenic level
for plants with silicon between 40 and 50 g/kg in our sample is 91.4 �g/kg, a much
larger value. �

The rice arsenic example shows that the SD line tends to overestimate the
mean value of Y for below average X values and underestimate the mean value of
Y for above average X values. Figure 12.3.3 shows an even more exaggerated ex-
ample for a data set with a correlation even farther from ; it is near zero

. Recall that a correlation of zero indicates no linear relationship be-
tween X and Y. This lack of linear relationship is demonstrated by the fact that the
(r = -0.05)
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Figure 12.3.2
Concentrations of arsenic
in rice versus silicon in
straw for 32 rice plants. The
dashed and solid lines are
the SD and fitted
regression lines,
respectively. Each ▲
symbol indicates the mean
rice arsenic concentration
for a range of straw silicon
concentrations specified by
the shading
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Figure 12.3.3 Scatterplot,
SD line (dashed), and fitted
regression line (solid) for a
sample of 100 data (x, y)
values with a correlation
near zero. The ▲ symbols
indicate the mean Y values
for ranges of X values
specified by the shading
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mean value of Y is about the same regardless of the value of X (most of the
▲’s in the plot are near 17).

If the SD line can be such a poor summary, why bother studying it? Because it is
an ideal starting place based on a perfect linear relationship. With a perfect (posi-
tive) linear relationship, the SD line is the best fitting line and has a slope of sy/sx.
Our examples illustrate that if the relationship is not perfect, the relationship be-
tween the mean Y values and X values has a flatter slope. Mathematically, it can be
shown that the line that is best suited to predicting Y (in a certain sense)—the so
called least-squares or fitted regression line—has a slope equal to r(sy/sx) and pass-
es through the point . That is, for X values one standard deviation above
average, the mean Y value will only be r standard deviations above average (assum-
ing that r is positive; if r is negative, then for X values one standard deviation above
average, the mean Y value will be r standard deviations below average).

Arsenic in Rice A summary and scatterplot of our rice arsenic data appear in Table
12.3.2 and Figure 12.3.4. In this example we estimate that plants with straw silicon
concentrations that are g/kg above average (i.e., one standard deviation
above average) will have rice arsenic concentrations that are 25.19 �g/kg lower than
average ( ). Equivalently, the slope of the fitted
regression line is

meaning that each additional 1-g/kg increase in straw silicon concentration is associ-
ated with a 2.51-�g/kg decrease in the rice arsenic concentration, on average. �

r(sy/sx) = -0.566 * (44.50/10.04) = -2.51(�g As/kg rice)/(g Si/kg straw)

r * sy = -0.566 * 44.50 = -25.19

sx = 10.04

Example
12.3.3

(xq,yq)

(L 17)

Table 12.3.2 Summary of rice arsenic data

X = Si in straw (g/kg) Y = As in rice (�g/kg)

Mean 29.85 122.25

SD 10.04 44.50

r = - 0.566
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Figure 12.3.4
Concentrations of arsenic
in rice versus silicon in
straw for 32 rice plants with
SD line (dashed) and fitted
regression line (solid)
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Least-Squares Regression Line of Y on X

 Intercept:b0 = yq - b1xq

 Slope:b1 = ra sy
sx
b

*There are other methods of finding fitted regression lines. In this text, we consider only the least-squares re-
gression line, which aims to minimize the squared vertical distances between the data values and the fitted line.

Equation of the Fitted Regression Line

The equation of a straight line can be written as

where b0 is the y-intercept and b1 is the slope of the line. The slope b1 is the rate of
change of Y with respect to X.

The fitted regression line of Y on X is written . We write (read
“Y-hat”) in place of Y to remind us that this line is providing only estimated or pre-
dicted Y values; unless the correlation is , we don’t expect the data values to fall
exactly on the line. The fitted regression line estimates the mean value of Y for any
given value of X. We discuss this concept of the regression line as a line of averages
in further detail below.

The slope and intercept of the least-squares* regression line are calculated from
the data as follows:

;1

yNyN = b0 + b1x

Y = b0 + b1X

Previously we saw the motivation for the formula for the slope, b1. The formula
for the intercept is also easy to motivate. We can rewrite the Y-intercept formula as

which shows that regression line passes through the joint mean of our data.
We illustrate the use of these formulas by continuing our rice arsenic example.

Arsenic in Rice Previously we found the slope of the regression line to be
(�g As/kg rice)/(g Si/kg straw). Using this value we find the

Y-intercept,

Thus, our fitted regression line is as previously displayed in
Figure 12.3.4. �

Note that the Y-intercept, the point , does not appear on
the scatterplot in Figure 12.3.4 as the X-scale limits do not extend to zero; they
range from about 5 to 55 to produce a plot for which the data fill the picture nicely.

Graph of Averages

If we have several observations of Y at a given level of X, we can estimate the pop-
ulation mean Y value for the given X value ( ) by simply using the sample aver-
age of Y, , for that given value of X; we can denote this sample average as .†yq|Xyq

mY|X

10, b02 = (0, 197.17)

yN = 197.17 - 2.51x

b0 = 122.25 - (-2.51) * 29.85 = 197.17�g/kg

b1 = r(sy/sx) = -2.51
Example
12.3.4

(xq,yq)

yq = b0 + b1xq

†A more detailed exposition of these “conditional means” appears in Section 12.4.
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Figure 12.3.5 Graph of
averages (▲) for food
consumption data from
Example 12.1.1 with the
original data plotted as
black dots 

Sometimes we are able to calculate a sample average, , for each of several X values.
A graph of is known as a graph of averages, since it shows the (observed) aver-
age of Y for different values of X.

Amphetamine and Food Consumption Figure 12.3.5 is a graph of averages for the food
consumption data in Table 12.1.1, showing the average y value for each of the 3 lev-
els of X. Note that the 3 ’s almost lie on a line. This supports the use of the linear
model with these data. �

yq

Example
12.3.5

yq|X
yq

If the ’s in a graph of averages fall exactly on a line, then that line is the regres-
sion line and is estimated with . Usually, however, the ’s are not perfectly
collinear. In this case, the regression line is a smoothed version of the graph of aver-
ages, resulting in a fitted model in which all of the estimates of fall on a line. By
smoothing the graph of averages into a line, we use information from all the obser-
vations to estimate at any level of X.

Amphetamine and Food Consumption If we apply the preceding regression formulas to
the food consumption data in Table 12.1.1, we obtain and 
Thus, the estimate of is 99.3 g/kg. This estimate differs slightly from ,
which is 100.0 g/kg. The estimate 99.3 makes use of (1) the 8 y values when 
(which averaged to 100.0) and (2) the linear trend established by the other 16 data
points, which showed higher food consumption associated with lower doses. Like-
wise, is , which differs slightly from

, which is 75.5 g/kg, and is , which dif-
fers slightly from , which is 55.0 g/kg. �

The idea of smoothing the graph of averages into a straight line carries over to
the setting in which we have only a single observation at each level of X, as is the
case with the rice arsenic example. When we draw a line through a set of (X, Y)
data, we are expressing a belief that the underlying dependence of the mean value
of Y on X is smooth, even though the data may show the relationship only rough-
ly. Linear regression is one formal way of providing a smooth description of the
data.

yq|X = 5
99.3 - 9.01 * 5 = 54.25g/kgmY|X=5yq|X = 2.5

99.3 - 9.01 * 2.5 = 76.78g/kgmY|X=2.5

X = 0
yq|X = 0mY|X=0

b1 = -9.01.b0 = 99.3
Example
12.3.6

mY|X

mY|X

yqyq|XmY|X

yq
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x

X

y

ŷ

Y

Residual

Figure 12.3.6 and the
residual for a typical data
point (x, y)

yN

The Residual Sum of Squares

We now consider a statistic that describes the scatter of the points about the fitted
regression line. The equation of the fitted line is . Thus, for each ob-
served xi in our data there is a predicted Y value of

Also associated with each observed pair (xi, yi) is a quantity called a residual, de-
fined as

Figure 12.3.6 shows and the residual for a typical data point (xi, yi). It can be
shown that the sum of the residuals, taking into account their signs, is always zero,
because of “balancing” of data points above and below the fitted regression line.The
magnitude (absolute value) of each residual is the vertical distance of the data point
from the fitted line.

yN

ei = yi - yNi

yNi = b0 + b1xi

y = b0 + b1x

Residual Sum of Squares

SS1resid2 = a
n

i=1
1yi - yNi22 = a

n

i=1
ei

2

It is clear from the definition that the residual sum of squares will be small if the
data points all lie very close to the line.

The following example illustrates the computation of SS(resid).

Note that a residual is calculated in terms of vertical distance. In using the re-
gression model we are thinking of the variable X as a predictor and
the variable Y as a response that depends on X. We care primarily about how close
each observed value, yi, is to its predicted value, . Thus, we measure vertical dis-
tance from each point to the fitted line. A summary measure of the distances of the
data points from the regression line is the residual sum of squares, or SS(resid),
which is defined as follows:

yNi

yN = b0 + b1x
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The Least-Squares Criterion

Many different criteria can be proposed to define the straight line that “best” fits a
set of data points. The classical criterion is the least-squares criterion:

Least-Squares Criterion
The “best” straight line is the one that minimizes the residual sum of squares.

The formulas given for b0 and b1 were derived from the least-squares criterion
by applying calculus to solve the minimization problem. (The derivation is given in
Appendix 12.1.) The fitted regression line is also called the “least-squares line.”

The least-squares criterion may seem arbitrary and even unnecessary. Why not
fit a straight line by eye with a ruler? Actually, unless the data lie nearly on a straight
line, it can be surprisingly difficult to fit a line by eye. The least-squares criterion
provides an answer that does not rely on individual judgment and that (as we shall
see in Sections 12.4 and 12.5) can be usefully interpreted in terms of estimating the
distribution of Y values for each fixed X. Furthermore, we will see in Section 12.8
that the least-squares criterion is a versatile concept, with applications far beyond
the simple fitting of straight lines.

Table 12.3.3 Calculation of SS(resid) for a portion of the rice arsenic data

Obs # x y yN y - yN 1y - yN22
1 8.3 186.2 176.2 . . . 10.0 . . . 99.50 . . .

2 11.8 115.5 167.6 . . . . . .-52.1 2716.00 . . .

3 14.3 87.9 161.2 . . . -73.3 Á 5373.93 . . .

4 18.7 217.2 150.2 . . . 67.0 . . . 4492.74 . . .

5 19.7 213.8 147.8 . . . 66.0 . . . 4356.67 . . .

6 21.2 150.0 144.0 . . . 6.0 . . . 35.53 . . .

7 23.0 136.2 139.4 . . . . . .-3.2 10.26 . . .

8 25.1 148.3 134.1 . . . 14.2 . . . 200.46 . . .

9 26.4 153.4 130.8 . . . 22.6 . . . 512.49 . . .

o o o o o o
27 38.3 69.0 101.0 . . . . . .-32.1 1028.99 . . .

28 41.1 132.8 94.0 . . . 38.8 . . . 1503.19 . . .

29 45.2 96.6 83.6 . . . 12.9 . . . 167.11 . . .

30 44.9 84.5 84.5 . . . 0.0 . . . 0.00 . . .

31 45.7 51.7 82.5 . . . . . .-30.8 948.51 . . .

32 51.8 58.6 67.1 . . . . . .-8.5 71.69 . . .

Sum 0.0 41727.11 = SS(resid)

Arsenic in Rice For the rice arsenic data, Table 12.3.3 indicates how SS(resid) would
be calculated from its definition. The values displayed are abbreviated to improve
readability. �

Example
12.3.7
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The Residual Standard Deviation

A summary of the results of the linear regression analysis should include a measure
of the closeness of the data points to the fitted line. A measure derived from the
residual sum of squares and easier to interpret is the residual standard deviation, de-
noted se, which is defined as follows:

Residual Standard Deviation

se = Ean
i=11yi - yNi22
n - 2

= Ean
i=1ei

2

n - 2
= CSS(resid)

n - 2

The residual standard deviation tells how far above or below the regression line
points tend to be. Thus, the residual standard deviation specifies how far off predic-
tions made using the regression model tend to be. Notice the factor in the denomi-
nator , rather than the usual . The following example illustrates the
calculation of se.

Arsenic in Rice For the rice arsenic data, we use SS(resid) from Example 12.3.7 to
calculate

Thus, predictions for the concentrations of arsenic in rice based on the regres-
sion model tend to err by about 37.30 �g/kg on average. �

Note that the formula for se is closely analogous to the formula for sy:

Both these SDs measure variability in Y, but the residual SD measures variability
around the regression line and the ordinary SD measures variability around the
mean, . Roughly speaking, se is a measure of the typical vertical distance of the
data points from the regression line. (Notice that the unit of measurement of se is
the same as that of Y—for instance, �g/kg in the case of the rice arsenic data or
grams in the case of the snake data from Example 12.2.1.) Figure 12.3.7 shows the
scatterplot and regression line for the snake data from Example 12.2.1 with the
residuals represented as vertical lines and the residual SD indicated as a vertical
ruler line. Note that the residual SD roughly indicates the magnitude of a typical
residual. Finding the equation of this line and the residual standard deviation ap-
pears as an exercise at the end of this section.

In many cases, se can be given a more definite quantitative interpretation. Re-
call from Section 2.6 that for a “nice” data set, we expect roughly 68% of the obser-
vations to be within 1 SD of the mean (and similarly for 95%, 2 SDs). Recall also
that these rules work best if the data follow approximately a normal distribution.
Similar interpretations hold for the residual SD: For “nice” data sets that are not too
small, we expect roughly 68% of the observed Y’s to be within of the regres-
sion line. In other words, we expect roughly 68% of the data points to be within a
vertical distance of se above and below the regression line (and similarly for 95%,

;1se

yq

sy = Ean
i=11yi - yq22
n - 1

se = C41727.11
32 - 2

= 21390.90 = 37.30 �g/kg

Example
12.3.8

n - 1n - 2
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).These rules work best if the residuals follow approximately a normal distribu-
tion. The rice arsenic data we’ve been working with are well-suited to illustrate the
68% rule.

Arsenic in Rice For the rice arsenic data, the fitted regression line is
and the residual standard deviation is . Figure 12.3.8

shows the data and the regression line. The dashed lines are a vertical distance of se
from the regression line. Of the 32 data points, 22 are within the dashed lines; thus,
22/32 or of the observed Y’s are within  of the regression line. �;1seL 69%

se = 37.30yN = 197.17 - 2.51x
Example
12.3.9
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Figure 12.3.8 Arsenic in
rice versus silicon in straw
for 32 rice plants. The
dashed lines are a vertical
distance of se from the
regression line
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Figure 12.3.7 Weight
versus length of nine
snakes showing the
residuals and a line
segment denoting the
magnitude of the residual
SD

The Coefficient of Determination

We have said that the magnitude of r describes the tightness of the linear relation-
ship between X and Y and have seen how its value is related to the slope of the re-
gression line. When squared, it also provides an additional and very interpretable



(The approximation in Fact 12.3.1 is best for large n, but it holds reasonably well
even for n as small as 10.) The numerator, , can be roughly interpreted as the
total variance in Y explained by the regression line: It is the difference between the
variance in Y and the residual variance—the variance left over after fitting the re-
gression line to the data. If the line fits the data very well, then will be close to
zero so this numerator will be close to ; in this case r2 will be close to 1. At the
other extreme, if the line is a very poor fit, then will be close to and the numer-
ator will be close to 0; in this case r2 will be close to 0. The denominator, , is the
variance of Y; thus the ratio, r2, is the proportion of the variance of Y that is
explained by the regression relationship between Y and X. Note that because

, . The following examples illustrate the interpretation and
an application of r2 in context.

Arsenic in Rice For the rice arsenic data, we found , so or
32.0%. Thus, 32% of the variance in rice arsenic concentration is explained by
the linear relationship between rice arsenic concentration and straw silicon
concentration. �

Amphetamine and Food Consumption The standard deviation of food consumption for
our entire sample of 24 rats (i.e., combining rats across all three doses of ampheta-
mine) was . Further, suppose r2 was given to be 0.739. What is the es-
timated standard deviation of food consumption for rats given 4-mg/kg doses of
amphetamine? That is, what is the value of ?

To answer this question we first must recognize that the value of X is irrelevant;
the residual standard deviation se describes the standard deviation of Y values for
any given X value, and therefore for . Thus, we need to find the value of se.
From Fact 12.3.1 we have

After a little algebra, we find that the (approximate) standard deviation of food
consumption for rats given 4-mg/kg doses of amphetamine is

�se L sy21 - r2 = 21.8421 - 0.739 = 11.16g/kg

r2 L 1 -
se

2

sy
2

X = 4

sY|X=4

sy = 21.84 g/kg

Example
12.3.11

r2 = 0.320r = -0.566Example
12.3.10

0 … r2 … 1-1 … r … 1

sy
2

sy
2se

2
sy

2
se

2

sy
2 - se2
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Fact 12.3.1: Approximate Relationship of r to se and sy

The correlation coefficient r obeys the following approximate relationship:

r2 L
sy

2 - se2

sy
2 = 1 -

se
2

sy
2

summary of the regression relationship. The coefficient of determination, r2,
describes the proportion of the variance in Y that is explained by the linear
relationship between Y and X. This interpretation follows from the following fact
(proved in Appendix 12.2).
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Exercises 12.3.1–12.3.10

12.3.1 In a study of protein synthesis in the oocyte (de-
veloping egg cell) of the frog Xenopus laevis, a biologist
injected individual oocytes with radioactively labeled
leucine.At various times after injection, he made radioac-
tivity measurements and calculated how much of the
leucine had been incorporated into protein. The results
are given in the accompanying table; each leucine value is
the content of labeled leucine in two oocytes. All oocytes
were from the same female.13

(a) Plot the mean drop in body temperature versus
dose. Plot the mean drop in body temperature
versus log(dose). Which plot appears more nearly
linear?

(b) Plot the individual (x, y) data points [where
].

(c) For the regression of Y on prelimi-
nary calculations yield the following: ,

, , , .
Calculate the fitted regression line and the (approxi-
mate) residual standard deviation.

(d) Draw the regression line on your graph.

(e) Is this study an example of an observational study or
an experiment? How can you tell?

(f) Could data from this study be used to determine
whether or not alcohol lowers body temperature?
Briefly explain.

12.3.3 Consider the cob weight data from Exercise
12.2.5.
(a) Use the summaries in Exercise 12.2.5 to calculate the

fitted regression line and approximate residual stan-
dard deviation.

(b) Interpret the value of the slope of the regression line,
b1, in the context of this setting.

(c) . Use this value to compute the
residual standard deviation. How does it compare to
the approximate value determined in part (a)?

(d) Interpret the value of se in the context of this setting.
(e) What proportion of the variation in cob weights is

explained by the linear relationship between cob
weight and density?

12.3.4 Consider the Fungus growth data from Exercise
12.2.6.
(a) Calculate the linear regression of Y on X.
(b) Plot the data and add the regression line to your

graph. Does the line appear to fit the data well?

(c) Use this to compute se. What
are the units of se?

(d) Draw a ruler line on your graph to show the magni-
tude of se. (See Figure 12.3.8).

12.3.5 Consider the Energy Expenditure data from Ex-
ercise 12.2.7.
(a) Calculate the linear regression of Y on X.

(b) Plot the data and add the regression line to your
graph. Does the line appear to fit the data well?

(c) Interpret the value of the slope of the regression line,
b1, in the context of this setting.

(d) Use this to compute se. What
are the units of se?
SS(resid) = 21026.1.

SS(resid) = 16.7812.

SS(resid) = 1337.3

r = 0.91074sy = 2.13437sx = 0.25439yq = 3.05333
xq = 0.477

X =  log (dose)

X =  log(dose)

TIME LEUCINE

0 0.02

10 0.25

20 0.54

30 0.69

40 1.07

50 1.50

60 1.74

Mean 30.00 0.830

SD 21.60 0.637

r = 0.993

SS(resid) = 0.035225

(a) Plot the data. Does there appear to be a relationship
between X and Y? Is it linear or nonlinear? Weak or
strong?

(b) Use linear regression to estimate the rate of incorpo-
ration of the labeled leucine.

(c) Draw the regression line on your graph.

(d) Calculate the residual standard deviation.

12.3.2 In an investigation of the physiological effects of
alcohol (ethanol), 15 mice were randomly allocated to
three treatment groups, each to receive a different oral
dose of alcohol.The dosage levels were 1.5, 3.0, and 6.0 gm
alcohol per kg body weight.The body temperature of each
mouse was measured immediately before the alcohol was
given and again 20 minutes afterward. The accompanying
table shows the drop (before minus after) in body temper-
ature for each mouse. (The negative value refers to a
mouse whose temperature rose rather than fell.)14

-0.1

ALCOHOL
DROP IN BODY 

TEMPERATURE (°C)

DOSE
(gm/kg)

LOG(DOSE) 
X

INDIVIDUAL 
VALUES (Y) MEAN

1.5 0.176 0.2 1.9 -0.1 0.5 0.8 0.66
3.0 0.477 4.0 3.2 2.3 2.9 3.8 3.24

6.0 0.778 3.3 5.1 5.3 6.7 5.9 5.26
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12.3.6 The rowan (Sorbus aucuparia) is a tree that grows
in a wide range of altitudes. To study how the tree adapts
to its varying habitats, researchers collected twigs with at-
tached buds from 12 trees growing at various altitudes in
North Angus, Scotland. The buds were brought back to
the laboratory and measurements were made of the dark
respiration rate. The accompanying table shows the alti-
tude of origin (in meters) of each batch of buds and the
dark respiration rate (expressed as μl of oxygen per hour
per mg dry weight of tissue).15

(a) Calculate the linear regression of Y on X.
(b) Plot the data and the regression line.
(c) Interpret the value of the slope of the regression line,

b1, in the context of this setting.
(d) Calculate the residual standard deviation.

12.3.7 Scientists studied the relationship between the
length of the body of a bullfrog and how far it can jump.
Eleven bullfrogs were included in the study. The results
are given in the table.16

(a) Calculate the linear regression of Y on X.
(b) Interpret the value of the slope of the regression line,

b1, in the context of this setting.
(c) What proportion of the variation in maximum jump

distances can be explained by the linear relationship
between jump distance and frog length?

(d) Calculate the residual standard deviation and specify
the units.

(e) Interpret the value of the residual standard deviation
in the context of this setting.

ALTITUDE OF 
ORIGIN X (m)

RESPIRATION 
RATE Y (�l/hr * mg)

90 0.11

230 0.20

240 0.13

260 0.15

330 0.18

400 0.16

410 0.23

550 0.18

590 0.23

610 0.26

700 0.32

790 0.37

Mean 433.333 0.21000

SD 214.617 0.07710
r = 0.88665

SS(resid) = 0.013986

12.3.8 The peak flow rate of a person is the fastest rate
at which the person can expel air after taking a deep breath.
Peak flow rate is measured in units of liters per minute and
gives an indication of the person’s respiratory health. Re-
searchers measured peak flow rate and height for each of a
sample of 17 men.The results are given in the table.17

BULLFROG LENGTH X (mm) MAXIMUM JUMP Y (cm)

1 155 71.0

2 127 70.0

3 136 100.0

4 135 120.0

5 158 103.3

6 145 116.0

7 136 109.2

8 172 105.0

9 158 112.5

10 162 114.0

11 162 122.9

Mean 149.6364 103.9909

SD 14.4725 17.9415
r = 0.28166

SS(resid) = 2,963.61

SUBJECT HEIGHT X (cm)
PEAK FLOW RATE Y

(l/min)

1 174 733

2 183 572

3 176 500

4 169 738

5 183 616

6 186 787

7 178 866

8 175 670

9 172 550

10 179 660

11 171 575

12 184 577

13 200 783

14 195 625

15 176 470

16 176 642

17 190 856

Mean 180.4118 660.0000

SD 8.5591 117.9952

r = 0.32725

SS(resid) = 198,909
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line, and two lines whose vertical distance above and
below the regression line is se. What percentage of the
data points are within of the regression line? What
percentage of the data points do you expect to find with-
in of the regression line? How do these values
compare?

(a) The body temperature data of Exercise 12.3.2.

(b) The corn yield data of Exercise 12.3.3.

12.3.10 Suppose a large sample of (x, y) pairs were used
to fit the regression of Y on X. Now suppose we observed
100 further (x, y) pairs.About how many of these new ob-
servations would you expect to be farther than 2se from
the regression line?

;se

;se

12.4 Parametric Interpretation of Regression: 
The Linear Model

One use of regression analysis is simply to provide a concise description of the data.
The quantities b0 and b1 locate the regression line and se describes the scatter of the
points about the line.

For many purposes, however, data description is not enough. In this section we
consider inference from the data to a larger population. In previous chapters we
have spoken of one or several populations of Y values. Now, to encompass the X
variable as well, we need to expand the notion of a population.

Conditional Populations and Conditional Distributions

A conditional population of Y values is a population of Y values associated with a
fixed, or given, value of X. Within a conditional population we may speak of the
conditional distribution of Y. The mean and standard deviation of a conditional pop-
ulation distribution are denoted as

(Note that the “given” symbol “|” is the same one used for conditional probability in
Chapters 3 and 10.) The following example illustrates this notation.

Amphetamine and Food Consumption In the rat experiment introduced in Example
12.1.1, the response variable Y was food consumption and the three values of X
(dose) were , , and . In Example 12.3.5 we examined the graph
of averages and considered the food consumption data as three independent sam-
ples (as for an ANOVA). In the ANOVA context we denote the three population
means as μ1, μ2, and μ3. In regression notation these means would be denoted as

respectively. Similarly, the three population standard deviations, which would be de-
noted as 1, 2, and 3 in an ANOVA context, would be denoted as

sY|X=0 sY|X=2.5 sY|X=5

sss

mY|X=0 mY|X=2.5 mY|X=5

X = 5X = 2.5X = 0

Example
12.4.1

sY|X = Population SD ofYvalues for a givenX

mY|X = Population meanYvalue for a givenX

(a) Calculate the linear regression of Y on X.
(b) What proportion of the variation in flow rate is ex-

plained by the linear regression of flow rate on height?
(c) For each subject, calculate the predicted peak flow

rate, using the regression equation from part (a).
(d) For each subject, calculate the residual, using the re-

sults from part (c).
(e) Calculate se and specify the units.
(f) What percentage of the data points are within of

the regression line? That is, what percentage of the
17 residuals are in the interval ?

12.3.9 For each of the following data sets, prepare a plot
like Figure 12.3.8, showing the data, the fitted regression

(-se, se)

;se
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respectively. In other words, the symbols

represent the mean and standard deviation of food consumption values for rats that
are given dose X of amphetamine. �

In observational studies, conditional distributions pertain to subpopulations
rather than experimental treatment groups, as in the following example.

Height and Weight of Young Men Consider the variables

and

for a population of young men. The conditional means and standard deviations are

Thus, and are the mean and standard deviation of weight in the
subpopulation of men whose height is X. Of course, there is a different subpopula-
tion for each value of X. �

The Linear Model

When we conduct a linear regression analysis, we think of Y as having a distribution
that depends on X. The analysis can be given a parametric interpretation if two con-
ditions are met. These conditions, which constitute the linear model, are given in the
following box.

sY|XmY|X

sY|X = SD of weights of men who areX inches tall

mY|X = Mean weight of men who areX inches tall

Y = Weight

X = Height

Example
12.4.2

mY|X and sY|X

The Linear Model
1. Linearity. where is a linear function of X; that is

Thus,

2. Constancy of standard deviation. does not depend on X. We denote
this constant value as .se

sY|X

Y = b0 + b1X + e.

mY|X = b0 + b1X

mY|XY = mY|X + e

In the linear model , the e term represents random error.
We include this term in the model to reflect the fact that Y varies, even when X is
fixed.The variability of Y for a fixed value of X is measured by the conditional stan-
dard deviation of Y, . But, because the linear model stipulates that this standard
deviation is the same for every value of X, we commonly use the notation e to
represent this standard deviation and refer to it as the standard deviation of the
random error.

The following two examples show the meaning of the linear model.

s

sY|X

Y = b0 + b1X + e
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Table 12.4.1 Conditional means and SDs of weight given height
in a population of young men*

Height (in) X
Mean weight 

(lb) mY|X

Standard deviation of 
weights (lb) sY|X

64 127 20

68 144 20

72 161 20

76 178 20

*Note that all values of are the same; they equal .se = 20sY|X

Amphetamine and Food Consumption For the rat food consumption experiment, the
linear model asserts that (1) the population mean food consumption is a linear func-
tion of dose, and that (2) the population standard deviation of food consumption
values is the same for all doses. Notice that the second condition is closely analogous
to the condition in ANOVA that the population SDs are equal: . The
linear model also allows for the fact that there is variability in Y when X is fixed. For
example, there were 8 observations for which . The 8 y-values averaged 55.0,
but none of the observations was equal to 55.0; there was substantial variability
within the 8 y-values. This variability is quantified by the SD of 13.3. �

Height and Weight of Young Men We consider an idealized fictitious population of
young men whose joint height and weight distribution fits the linear model exactly.
For our fictitious population we will assume that the conditional means and SDs of
weight given height are as follows:

Thus, the regression parameters of the population are and .
(This fictitious population resembles that of U.S. 17-year-olds.)18 Thus, the model is

.
Table 12.4.1 shows the conditional means and SDs of for a few se-

lected values of . Figure 12.4.1 shows the conditional distributions of Y
given X for these selected subpopulations.

X = height
Y = weight

Y = -145 + 4.25X + e

b1 = 4.25b0 = -145

se = 20

mY|X = -145 + 4.25X

Example
12.4.4

X = 5

s1 = s2 = s3

Example
12.4.3

Height (in)
X

Y
W

ei
gh

t (
lb

)

11
0 

14
0 

17
0 

20
0 

23
0

D
en

si
ty

64 68 72 76

Figure 12.4.1 Conditional
distributions of weight
given height in a
population of young men



Within the framework of the linear model and the random subsampling model, the
quantities b0, b1, and se calculated from a regression analysis can be interpreted as
estimates of population parameters:

b0 is an estimate of 0

b1 is an estimate of 1

se is an estimate of e

Length and Weight of Snakes From the summaries of the snake data of Example 12.2.1
and 12.2.2, we can compute the following regression coefficients ,

, and (computing these yourself from the provided summaries
would be a good exercise). Thus,

is our estimate of 0

7.19 is our estimate of 1

12.5 is our estimate of e �

The application of the linear model to the snake data has yielded two benefits.
First, the slope of the regression line, 7.19 gm/cm, is an estimate of a morphological
parameter (“weight per unit length”), which is of potential biological interest in
characterizing the population of snakes. Second, we have obtained an estimate (12.5
g) of the variability of weight among snakes of fixed length, even though no direct
estimate of this variability was possible because no two of the observed snakes were
the same length.

s

b

b-301

se = 12.5b1 = 7.19
b0 = -301

Example
12.4.5

s

b

b

Note, for example, that if (in), then the mean weight is 144 (lb) and
the SD of the weights is 20 (lb). For this subpopulation, . If a particular
young man who is 68 inches tall weighs 145 pounds, then for him. If another
68-inch-tall young man weighs 140 pounds, then in his case. Of course, 0, 1,
and are generally not observable. This example is fictitious. �

Remark. Actually, the term regression is not confined to linear regression. In gener-
al, the relationship between and X is called the regression of Y on X. The lin-
earity assumption asserts that the regression of Y on X is linear rather than, for
instance, a curvilinear function.

Estimation in the Linear Model

Consider now the analysis of a set of (X, Y) data. Suppose we assume that the
linear model is an adequate description of the true relationship of Y and X.
Suppose further that we are willing to adopt the following random subsampling
model:

mY|X

e

bbe = -4
e = 1

Y = 144 + e
height = 68

508 Chapter 12 Linear Regression and Correlation

Random Subsampling Model
For each observed pair (x, y), we regard the value y as having been sampled at
random from the conditional population of Y values associated with the X
value x.
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Interpolation in the Linear Model

In Section 12.3 we regarded the regression line as a line of averages. The idea of
smoothing the graph of averages into a straight line can be extended to the setting in
which we have only a single observation at each level of X. When we draw a line
through a set of (X, Y) data, we are expressing a belief that the underlying depend-
ence of Y on X is smooth, even though the data may show the relationship only
roughly. Linear regression is one formal way of providing a smooth description of
the data as illustrated in the following example.

Arsenic in Rice What are the mean and standard deviation of arsenic concentra-
tions in rice for plants with straw silicon concentrations of 33 g/kg? None of our
observed plants had a straw silicon concentration of 33 g/kg. If there were some
observations with this much silicon, we could average the associated arsenic
concentrations to obtain one answer to our question, but because there is an
apparent linear relationship between X and Y, we can use the line to obtain an
even better estimate of the mean rice arsenic concentration that uses all of the
data. In Example 12.3.4 we found the regression equation to be 
and . Thus the estimated mean arsenic concentration for straw with
33 g/kg silicon is with a standard deviation of

. Figure 12.4.2 shows the interpolation graphically. �se = 37.30 �g/kg
197.17 - 2.51 * 33 = 114.35�g/kg

se = 37.30
yN = 197.17 - 2.51x

Example
12.4.6

30
33

40 5010 20

Si in straw (g/kg)

200

150

100

114.35

50

A
s 

in
 p

ol
is

he
d 

ri
ce

 (
μg
/k

g)

Figure 12.4.2
Concentrations of arsenic
in rice versus silicon in
straw for 32 rice plants

Note that estimation of the mean uses the linearity condition of the linear
model, while estimation of the standard deviation uses the condition of constant
standard deviation. In some situations only the linearity condition may be plausible,
and then only the mean would be estimated.

Example 12.4.6 is an example of interpolation, because the X values we chose
( for the rice arsenic and 3.5 for the food consumption examples) were with-
in the range of observed values of X. By contrast, extrapolation is the use of a re-
gression line (or other curve) to predict Y for values of X that are outside the range
of the data. Extrapolation should be avoided whenever possible, because there is
usually no assurance that the relationship between and X remains linear for X
values outside the range of those observed. Many biological relationships are linear
for only part of the possible range of X values. The following is an example.

mY|X

X = 33
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Prediction and the Linear Model

Consider the setting of using height, X, to predict weight, Y, for a large group of
young men for whom the average weight is 150 pounds. Suppose a young man is
chosen at random and we must predict his weight.

1. If we don’t know anything about the height of the man, then the best estimate
we can give of his weight is the overall average weight, .

2. Suppose we learn that the man’s height is 76 inches. If we know that the aver-
age weight of all 76-inch-tall men in the group is 180 pounds, then we can use
this conditional average, , as our prediction of the man’s weight. We
expect this prediction, which essentially is using the graph of averages (but
without smoothing), to be more accurate than the one given in part 1.

3. Suppose we learn that the man’s height is 76 inches and we also know that the
least-squares regression equation is . Then we can use the
value to get a prediction, which would be .

Is the prediction in 3 better than the prediction made in 2? Since using the regres-
sion equation amounts to smoothing the graph of averages, we expect prediction 3
to be better than prediction 2 to the extent that we believe that there is a linear rela-
tionship between height and weight. Prediction 3 has the advantage of using informa-
tion from all the data points, not just those for which . Method 3 also has the
advantage of allowing for predictions when the x value (the height) is not one that is
in the original data set (as discussed in the preceding subsection “Interpolation in
the Linear Model”), so that is not known. However, method 3 will give poor pre-
dictions if the linear relationship does not hold. Thus it is very important to think
about such relationships, and to explore them graphically, before using a regression
model.

yq|x

x = 76

-140 + 4.3 * 76 = 186.8x = 76
Y = -140 + 4.3X

yq|x = 76

yq = 150

Amphetamine and Food Consumption The dose-response relationship for the rat food
consumption experiment of Example 12.1.1 looks approximately like Figure 12.4.3.19

The data cover only the linear portion of the relationship. Clearly it would be
unwise to extrapolate the fitted line out to  or  . �X = 15X = 10

Example
12.4.7

10 150 5

X = Dose of amphetamine (mg/kg)

100

80

60

40

Y
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Figure 12.4.3
Dose-response curve
(mean response versus
dose) for rat food
consumption experiment
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Exercises 12.4.1–12.4.9

12.4.1 For the data in Exercise 12.2.6 there were two obser-
vations for which . The average response (Y value)

for these points is . However, the 

intercept of the regression line, b0, is not 32.15. Why not?
Why is b0 a better estimate of the average fungus growth
when laetisaric acid concentration is zero than 32.15?

12.4.2 Refer to the body temperature data of Exercise
12.3.2. Assuming that the linear model is applicable, esti-
mate the mean and the standard deviation of the drop in
body temperature that would be observed in mice given
alcohol at a dose of 2 gm/kg. [Tip: Is the X variable dose
or log(dose)?]

12.4.3 Refer to the cob weight data of Exercises 12.2.5
and 12.3.3. Assume that the linear model holds.
(a) Estimate the mean cob weight to be expected in a

plot containing (i) 100 plants; (ii) 120 plants.
(b) Assume that each plant produces one cob. How

much grain would we expect to get from a plot con-
taining (i) 100 plants? (ii) 120 plants?

12.4.4 (Continuation of Exercise 12.4.3). For the cob
weight data, . Estimate the standard
deviation of cob weight in plots containing (i) 100 plants;
(ii) 120 plants.

12.4.5 Refer to the fungus growth data of Exercise
12.2.6. For these data, . AssumingSS(resid) = 16.7812

SS(resid) = 1,337.3

33.3 + 31.0
2

= 32.15

X = 0
that the linear model is applicable, find estimates of the
mean and standard deviation of fungus growth at a laeti-
saric acid concentration of 15 �g/ml.

12.4.6 Refer to the energy expenditure data of Exercise
12.2.7. Assuming that the linear model is applicable, esti-
mate the 24-hour energy expenditure of a man whose fat-
free mass is 55 kg.

12.4.7 Refer to the Ca pump activity of Exercise 12.2.8.
For these data .

(a) Assuming that the linear model is applicable, esti-
mate the mean and standard deviation basal Ca
pump activity for children born to mothers with a
hair Hg level of 3 �g/g.

(b) Using the values computed in part (a) to support
your answer, would it be surprising for a mother with
a hair Hg level of 3 �g/g to give birth to a child with a
basal Ca pump activity above 4000 nmol/mg/hr?

12.4.8 Refer to the bullfrog data of Exercise 12.3.7. As-
suming that the linear model is applicable, estimate the
maximum jump length of a bullfrog whose body length is
150 mm.

12.4.9 Refer to the peak flow data of Exercise 12.3.8.As-
suming that the linear model is applicable, find estimates
of the mean and standard deviation of peak flow for men
180 cm tall.

SS(resid) = 21,984,623

12.5 Statistical Inference Concerning 1
The linear model provides interpretations of b0, b1, and se that take them beyond
data description into the domain of statistical inference. In this section we consider
inference about the true slope 1 of the regression line. The methods are based on
the condition that the conditional population distribution of Y for each value of X is
a normal distribution. This is equivalent to stating that in the linear model of

, the e values come from a normal distribution.

The Standard Error of b1

Within the context of the linear model, b1 is an estimate of 1. Like all estimates cal-
culated from data, b1 is subject to sampling error. The standard error of b1 is calcu-
lated as follows:

b

Y = b0 + b1X + e

b

b

Standard Error of b1

SEb1
=

se
sx1n - 1

The following example illustrates the calculation of .SEb1



As another way of thinking about this, imagine holding your arms out in front of
you, extending the index finger on each hand, and balancing a meter stick on your
two fingers. If you move your hands far apart from each other, balancing the meter
stick is easy—this is like case (b). However, if you move your hands close together,
balancing the meter stick becomes more difficult—this is like case (a). Having the
base of support spread out increases stability. Likewise, having the x values spread
out decreases the standard error of the slope.
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Figure 12.5.1 Two data
sets with the same value of
n and of se but different sx:
(a) smaller sx and (b)
larger sx

Length and Weight of Snakes For the snake data, we found in Table 12.2.2 that ,
, and in Example 12.4.5 that . The standard error of b1 is

To summarize, the slope of the fitted regression line (from Example 12.4.5) is

and the standard error of this slope is

�

Structure of the SE. Let us see how the standard error of b1 depends on various as-
pects of the data. In the same way that depends on the variability in the Y data
(sy) and the sample size (n), depends on the scatter of the data about the re-
gression line (se) and the size of the sample (n). The formula for supports our
intuition showing that data with less scatter about the regression line (smaller se)
and larger sample sizes (larger n) produce more precise estimates of 1 (i.e., a small-
er ). While variability in Y and sample size are the only two factors that affect
our ability to estimate a population mean precisely ( ), there is a third factor that
is important for precise estimation of b1: the variability of the X data. The more
spread out our X values (larger sx), the more precise our estimate of 1 will be. The
dependence on the spread in the X values is illustrated in Figure 12.5.1, which shows
two data sets with the same value of se and the same value of n, but different values
of sx. Imagine using a ruler to fit a straight line by eye; it is intuitively clear that the
data in case (b)—with the larger sx—would determine the slope of the line more
precisely.

b

SEY
SEb1

b

SEb1

SEb1

SEY

SEb1
= 0.95gm/cm

b1 = 7.19gm/cm

SEb1
=

12.5
4.63719 - 1

= 0.9531

se = 12.5sx = 4.637
n = 9Example

12.5.1
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Implications for Design. The previous discussion implies that, for the purpose of
gaining precise information about 1, it is best to have the values of X as widely dis-
persed as possible. This fact can guide the experimenter when the design of the ex-
periment includes choosing values of X. Other factors also play a role, however. For
instance, if X is the dose of a drug, the criterion of widely dispersed X’s would lead
to using only two dosages, one very low and one very high. But in practice an exper-
imenter would want to have at least a few observations at intermediate doses, to
verify that the relation is actually linear within the range of the data.

Confidence Interval for 1

In many studies the quantity 1 is a biologically meaningful parameter and a pri-
mary aim of the data analysis is to estimate 1. A confidence interval for b1 can be
constructed by the familiar method based on the SE and Student’s t distribution. For
instance, a 95% confidence interval is constructed as

where the critical value t0.025 is determined from Student’s t distribution with

Intervals with other confidence coefficients are constructed analogously; for in-
stance, for a 90% confidence interval one would use t0.05.

Length and Weight of Snakes Let us use the snake data to construct a 95% confidence
interval for 1. We found that and . There are 
observations; we refer to Table 4 with , and obtain

The confidence interval is

or

We are 95% confident that the true slope of the regression of weight on length for
this snake population is between 4.94 gm/cm and 9.45 gm/cm; this is a rather wide
interval because the sample size is not very large. �

Testing the Hypothesis 

In some investigations it is not a foregone conclusion that there is any linear rela-
tionship between X and Y. It then may be relevant to consider the possibility that
any apparent trend in the data is illusory and reflects only sampling variability. In
this situation it is natural to formulate the null hypothesis

Within the linear model, this hypothesis can be translated as

H0: .b1 = 0

H0: mY|X does not depend onX

H0:b1 = 0

4.94 gm/cm 6 b1 6 9.45 gm/cm

7.19186 ; 2.365 * 0.9531

t7,0.025 = 2.365

df = 9 - 2 = 7
n = 9SEb1

= 0.9531b1 = 7.19186b

Example
12.5.2

df = n - 2

b1 ; t0.025 SEb1

b

b

b

b
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A t test of H0 is based on the test statistic*

Critical values are obtained from Student’s t distribution with

The following example illustrates the application of this t test.

Blood Pressure and Platelet Calcium The blood pressure and platelet calcium data
from Example 12.2.3 are shown in Figure 12.5.2. Calculations from the data yield

, , , , from which we can
calculate†

The residual sum of squares is 6311.7618.
Thus,

The values of b0, b1, SS(resid), and SEb1 are generally found using computer
software. The following computer output is typical:

The regression equation is

Platelet Pressure

Predictor Coef SE Coef T P
Constant 25.65 0.932
Blood Pressure 1.1648 0.2704 4.31 0.000

Analysis of Variance

Source DF SS MS F P
Regression 1 3252.6 3252.6 18.55 0.000
Residual Error 36 6311.8 175.3
Total 37 9564.3

We will test the null hypothesis

against the nondirectional alternative

HA:b1 Z 0

H0:b1 = 0

R - Sq(adj) = 32.2%R - Sq = 34.0%S = 13.2411

-0.09-2.20

Calcium = -2.2 + 1.16 Blood

se = C6311.76
38 - 2

= 13.24 and SEb1
=

13.24
8.04968138 - 1

= 0.2704

b0 = -2.2009 and b1 = 1.16475

sy = 16.07780sx = 8.04968yq = 107.86840xq = 94.50000

Example
12.5.3

df = n - 2

ts =
b1 - 0
SEb1

*We include the “ ” in the numerator of the test statistic to remind us that we are comparing our estimated
(observed) slope, b1, to the slope we’d expect to observe if the null hypothesis were true. In the exercises we will
consider a situation for which the hypothesized slope may be a value other than zero.

-0

†As the following values are intermediate calculations used in the regression, we include more digits than one
would typically display in a summary.



Section 12.5 Statistical Inference Concerning 1 515b

80 95 100 1059085
Blood pressure (mm Hg)

110

80

100

90

110

120

130

P
la

te
le

t c
al

ci
um

 (
nM

)

Figure 12.5.2 Blood
pressure and platelet
calcium for 38 persons with
normal blood pressure

*There are tests that can (in some circumstances) test whether the true relationship is linear. Furthermore, there
are tests that can test for a linear component of trend without assuming that the relationship is linear.These tests
are beyond the scope of this book.

These hypotheses are translations, within the linear model, of the verbal hypotheses

(Note: “Linearly related” does not necessarily refer to causal dependence as we have
discussed in Section 12.2.)

Let us choose . The test statistic is

From Table 4 with , we find . Thus, we find
and we reject H0. The data provide sufficient (and very strong) ev-

idence to conclude that the true slope of the regression of platelet calcium on blood
pressure in this population is positive (that is, ). �

Note that the test on 1 does not ask whether the relationship between and
X is linear. Rather, the test asks whether, assuming that the linear model holds, we
can conclude that the slope is nonzero. It is therefore necessary to be careful in
phrasing the conclusion from this test. For instance, the statement “There is a signif-
icant linear trend” could easily be misunderstood.*

As is the case with other hypothesis tests, if we wish to use a directional alterna-
tive hypothesis we follow the two-step procedure of (1) checking that the specified
direction is correct (which in a regression setting means checking that the slope of
the regression line has the correct or sign) and (2) cutting the nondirectional P-
value in half if this condition is met.

-+

mY|Xb

b1 7 0

P-value 6 0.001
t40,0.0005 = 3.551df = n - 2 = 36 L 40

ts =
1.16475
0.2704

= 4.308

a = 0.05

HA:Mean platelet calcium is linearly related to blood pressure

H0:Mean platelet calcium is not linearly related to blood pressure
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Exercises 12.5.1–12.5.9

12.5.1 Refer to the leucine data given in Exercise 12.3.1.
(a) Construct a 95% confidence interval for 1.
(b) Interpret the confidence interval from part (a) in the

context of this setting.

12.5.2 Refer to the body temperature data of Exercise
12.3.2. For these data, . Construct a 95% con-
fidence interval for 1.

12.5.3 Refer to the cob weight data of Exercise 12.2.5.
For these data, .
(a) Construct a 95% confidence interval for 1.
(b) Interpret the confidence interval from part (a) in the

context of this setting.

12.5.4 Refer to the fungus growth data of Exercise
12.2.6. For these data, .
(a) Calculate the standard error of the slope, SEb1.
(b) Consider the null hypothesis that laetisaric acid has

no effect on growth of the fungus. Assuming that the
linear model is applicable, formulate this as a hy-
pothesis about the true regression line, and test the
hypothesis against the alternative that laetisaric acid
inhibits growth of the fungus. Let .

12.5.5 Refer to the energy expenditure data of Exercise
12.2.7. For these data, .
(a) Construct a 95% confidence interval for 1.
(b) Construct a 90% confidence interval for 1.

12.5.6 Refer to the basal Ca pump data from Exercise
12.2.8. For these data, .
(a) Construct a 95% confidence interval for 1.
(b) What do you think about a claim that that 1 is less

than (nmol/mg/hr)/(�g/g)? Use your
interval from part (a) to support your answer.

-800
b

b

se = 548.78

b

b

SS(resid) = 21,026.1

a = 0.05

SS(resid) = 16.7812

b

SS(resid) = 1,337.3

b

se = 0.91472

b

(c) What do you think about a claim that 1 is less than
800 (nmol/mg/hr)/(μg/g) in magnitude? Use your in-
terval from part (a) to support your answer.

12.5.7 Refer to the respiration data of Exercise 12.3.6.
Assuming that the linear model is applicable, test the null
hypothesis of no relationship against the alternative that
trees from higher altitudes tend to have higher respira-
tion rates. Let .
12.5.8 The following computer output is from fitting a re-
gression model to the snake length data of Example 12.2.2.
Use this output to construct a 95% confidence interval
for 1.

The regression equation is

Predictor Coef Stdev t-ratio p
Constant 60.19 0.000
Length 7.1919 0.9531 7.55 0.000

Analysis of Variance

SOURCE DF SS MS F p
Regression 1 8896.3 8896.3 56.94 0.000
Error 7 1093.7 156.2
Total 8 9990.0

12.5.9 Refer to the peak flow data of Exercise 12.3.8.As-
sume that the linear model is applicable.
(a) Test the null hypothesis of no relationship against

the alternative that peak flow is related to height.
Use a nondirectional alternative with .

(b) Repeat the test from part (a), but this time use the
directional alternative that peak flow tends to in-
crease with height. Again let .a = 0.10

a = 0.10

R-sq(adj) = 87.5%R-sq = 89.1%s = 12.50

-5.00-301.09

Weight = -301 + 7.19Length

b

a = 0.05

b

12.6 Guidelines for Interpreting Regression and
Correlation

Any set of (X, Y) data can be submitted to a regression analysis and values of b0, b1,
se, and r can be calculated. But these quantities require care in interpretation. In this
section we discuss guidelines and cautions for interpretation of linear regression
and correlation. We first consider the use of regression and correlation for purely
descriptive purposes and then turn to inferential uses.

When Is Linear Regression Descriptively Inadequate?
Linear regression and correlation may provide inadequate description of a data set
if any of the following features is present:

• curvilinearity
• outliers
• influential points
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We briefly discuss each of these.
If the dependence of Y on X is actually curvilinear rather than linear, the appli-

cation of linear regression and correlation can be very misleading. The following
example shows how this can happen.

A Curvilinear Relationship with X Figure 12.6.1 shows a set of fictitious data that obeys an
exact relationship: . Nevertheless, X and Y are uncorrelated:

and . The best straight line through the data would be a horizontal one,
but of course the line would be a poor summary of the curvilinear relationship between
X and Y. The residual SD is ; however, since these data are nonrandom, se
does not measure random variation, but rather measures deviation from linearity. �

se = 2.27

b1 = 0r = 0
Y = -1 + 6X - X2

Example
12.6.1
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Figure 12.6.1 Data for
which X and Y are
uncorrelated but have a
strong curvilinear
relationship

Generally, the consequences of curvilinearity are that (1) the fitted line does not
adequately represent the data; (2) the correlation is misleadingly small; (3) se is
inflated. Of course, Example 12.6.1 is an extreme case of this distortion. A data set
with mild, but still noticeable, curvilinearity is shown in Figure 12.6.2.
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20

Y

Figure 12.6.2 Data
displaying mild
curvilinearity



Outliers in a regression setting are data points that are unusually far from the
linear trend formed by the data. Outliers can distort regression analysis in two ways:
(1) by inflating se and reducing correlation; and (2) by unduly influencing the regres-
sion line. Note that a point can be an outlier in a scatterplot without being an outlier
in either the distribution of X values or the distribution of Y values as we shall see in
the following example.

Figure 12.6.3 displays a data set with a variety of outliers. Figure 12.6.3(a)
displays a data set with no outliers, while (b) and (c) show data with regression
outliers—they have points that fall far from the regression line. In plot (b) the outly-
ing point does not appear to affect the slope of the regression line very much, but it
does increase the residual standard deviation, se, and reduce correlation. The outly-
ing point in plot (c) appears to greatly affect the slope of the estimated regression
line; it also increases se and reduces the correlation. While the unusual point in plot
(d) is an outlier with respect to the X (and Y) distribution, it is not an outlier in the
regression context as it does not fall far from the regression line.

Leverage points are points that have the potential to greatly influence the slope
of the fitted regression model.The further a point’s X value is from the center of the
X distribution, the more leverage that point has on the overall regression model.
Having and actually exerting leverage are two different things, however. Figure
12.6.3 plots (c) and (d) display examples of leverage points. In plot (c) the leverage
point is shown to actually exert its leverage on the line, tipping the regression from
the bulk of the data. A point that has a large effect on the regression model is called
an influential point. Plot (d) shows a leverage point (because of the extreme X
value) that is not influential because the regression line does not get pulled away
from the trend in the bulk of the data. Note that the outlier in plot (b) is not consid-
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Figure 12.6.3 Different
effects of outliers on the
regression line. Boxplots of
the X and Y data appear in
the margins of each
scatterplot. (a) A data set
with no outliers; (b) the
same data except for one
outlier in the middle of the
X values; (c) the same data
except for one outlier at
the high end of the X
values (a point with
leverage and influence);
and (d) the same data
except for one point that is
an outlier with respect to
the X (and Y) distribution,
but not with respect to the
regression line (a point
with leverage, but little
influence)
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ered a leverage point—its ability to affect the slope of the line is weak as its X value
is near the center of the X distribution.

Influential points can also greatly affect (increase or decrease) the size of the
correlation coefficient. In Figure 12.6.3, the influential point in (c) lowered the cor-
relation from in (a) to . Example 12.6.3 shows a situation for
which the correlation is increased by the presence of an influential point.

Figure 12.6.4 (a) shows a data set and a regression line. Figure 12.6.4 (b) shows
the same data set, but with an influential point added. Including the influential point
in the data set changes the regression line noticeably. Although the influential point
is an outlier in the X and Y distributions, it is not a regression outlier since the resid-
ual for this point is not very large.

The correlation coefficient for the data in Figure 12.6.4(a) is . Adding
the influential point to the data set changes the correlation to for the data
in Figure 12.6.4(b).

r = 0.759
r = 0.053
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(b) r = 0.759

Figure 12.6.4 The effect
of an influential point on
the regression line. (a) A
data set; (b) the same data
with an influential point
added

Conditions for Inference

The quantities b0, b1, se, and r can be used to describe a scatterplot that shows a lin-
ear trend. However, statistical inference based on these quantities depends on cer-
tain conditions concerning the design of the study, the parameters, and the
conditional population distributions. We summarize these conditions and then dis-
cuss guidelines and cautions concerning them.

1. Design conditions. We have discussed two sampling models for regression and
correlation:

(a) Random subsampling model: For each observed X, the corresponding
observed Y is viewed as randomly chosen from the conditional popula-
tion distribution of Y values for that X.*

(b) Bivariate random sampling model: Each observed pair (X, Y) is viewed as
randomly chosen from the joint population distribution of bivariate pairs
(X, Y).

In either sampling model, each observed pair (X, Y) must be independent of
the others. This means that the experimental design must not include any pair-
ing, blocking, or hierarchical structure.

*If the X variable includes measurement error, then X in the linear model must be interpreted as the measured
value of X rather than some underlying “true” value of X. A linear model involving the “true” value of X leads
to a different kind of regression analysis.
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2. Conditions concerning parameters. The linear model states that
(a) .
(b) se does not depend on X.

3. Condition concerning population distributions. The confidence interval and t
test are based on the conditional population distribution of Y for each fixed X
having a normal distribution.

The random subsampling model is required if b0, b1, and se are to be viewed as esti-
mates of the parameters b0, b1, and se mentioned in the linear model. The bivariate
random sampling model is required if r is to be viewed as an estimate of a population
parameter . It can be shown that if the bivariate random sampling model is applica-
ble, then the random subsampling model is also applicable. Thus, regression parame-
ters can always be estimated if correlation can be estimated, but not vice versa.

Guidelines Concerning the Sampling Conditions

Departures from the sampling conditions not only affect the validity of formal tech-
niques such as the confidence interval for b1, but can also lead to faulty interpreta-
tion of the data even if no formal statistical analysis is performed. Two errors of
interpretation that sometimes occur in practice are (1) failure to take into account
dependency in the observations, and (2) insufficient caution in interpreting r when
the X’s do not represent a random sample.

The following two examples illustrate studies with dependent observations.

Serum Cholesterol and Serum Glucose A data set consists of 20 pairs of measurements
on serum cholesterol (X) and serum glucose (Y) in humans. However, the experi-
ment included only two subjects; each subject was measured on 10 different occa-
sions. Because of the dependency in the data, it is not correct to naively treat all 20
data points alike. Figure 12.6.5 illustrates the difficulty; the figure shows that there is
no evidence of any correlation between X and Y, except for the modest fact that the
subject who has larger X values happens also to have larger Y values. Clearly it
would be impossible to properly interpret the scatterplot if all 20 points were plot-
ted with the same symbol. By the same token, application of regression or correla-
tion formulas to the 20 observations would be seriously misleading.20

�

Example
12.6.2

r

mY|X = b0 + b1X
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Figure 12.6.5 Twenty
observations of 
cholesterol and 
glucose in humans

Y = serum
X = serum

Growth of Beef Steers Figure 12.6.6 shows 20 pairs of measurements on the weight (Y)
of beef steers at various times (X) during a feeding trial.The data represent four an-
imals, each weighed at five different times; observations on the same animal are
joined by lines in the figure. An ordinary regression analysis on the 20 data points

Example
12.6.3
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Figure 12.6.6 Twenty
observations of 
and in steers.
Data for individual animals
are joined by lines

Y = weight
X = days

would ignore the information carried in the lines and would yield inflated SEs and
weak tests. Similarly, an ordinary scatterplot (without the lines) would be an inade-
quate representation of the data.21

�

In Example 12.6.2, ignoring the dependency in the observations would lead to
overinterpretation of the data—that is, concluding that a relationship exists when
there is actually very little evidence for it. By contrast, ignoring the dependency in
Example 12.6.3 would lead to underinterpretation of the data—that is, insufficiently
extracting the “signal” from the “noise.”

In interpreting the correlation coefficient r, one should recognize that r is influ-
enced by the degree of spread in the values of X. If the regression quantities b0, b1,
and se are unchanged, more spread in the X values leads to a stronger correlation
(larger magnitude of r). The following example shows how this happens.

Figure 12.6.7 shows fictitious data that illustrate how r can be affected by the distri-
bution of X. The data points in parts (a) and (b) have been plotted together in part
(c). The regression line is nearly the same in all three scatterplots, but notice that X
and Y appear more highly correlated in (c) than in either (a) or (b). The contrasting
appearance of the scatterplots is reflected in the correlation coefficients; in fact,

for (a), for (b), but for (c). �

The fact that r depends on the distribution of X does not mean that r is invalid as
a descriptive statistic. But it does mean that, when the values of X cannot be viewed
as a random sample, r must be interpreted cautiously. For instance, suppose two

r = 0.85r = 0.58r = 0.60

Example
12.6.4
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Figure 12.6.7 Dependence of r on the distribution of X. The data of (a) and (b) are plotted
together in (c)
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experimenters conduct separate studies of response (Y) to various doses (X) of a drug.
Each of them could calculate r as a description of her or his own data, but they should
not expect to obtain similar values of r unless they both use the same choice of doses
(X values). By contrast, they might reasonably expect to obtain similar regression lines
and similar residual standard deviations, regardless of their choice of X values, as long
as the dose-response relationship remains the same throughout the range of doses used.

Labeling X and Y. If the bivariate random sampling model is applicable, then the in-
vestigator is free to decide which variable to label X and which to label Y. Of course,
for calculation of r the labeling does not matter. For regression calculations, the deci-
sion depends on the purpose of the analysis. The regression of Y on X yields (within
the linear model) estimates of —that is, the population mean Y value for fixed X.
Similarly, the regression of X on Y is aimed at estimating —that is, the mean X
value for fixed Y. These approaches do not lead to the same regression line because
they are directed at answering different questions.An intuitive example follows.

Height and Weight of Young Men For the population of young men described in
Example 12.4.4, the mean weight of young men 76'' (6'4'') tall is 178 lb. Now consid-
er this question: What would be the mean height of young men who weigh 178 lb?
There is no reason that the answer should be 76''. Intuition suggests that the answer
should be less than 76''—and in fact it is about 71''. �

Guidelines Concerning the Linear Model and Normality Condition

The test and confidence interval for b1 are based on the linear model and the condition
of normality.The interpretation of these inferences can be seriously degraded if the lin-
earity condition is not met; after all, we have seen earlier in this section that even the
descriptive usefulness of regression is reduced if curvilinearity or outliers are present.

In addition to linearity, the linear model specifies that se is the same for all the
observations.A common pattern of departure from this condition is a trend for larger
means to be associated with larger SDs. Mild nonconstancy of the SDs does not
seriously affect the interpretation of b0, b1, , and r (although it does invalidate
the interpretation of se as a pooled estimate of a common SD).

Residual Plots

Formal statistical tests for curvilinearity, unequal standard deviations, nonnormality,
and outliers are beyond the scope of this book. However, the single most useful in-
strument for detecting these features is the human eye, aided by scatterplots. For in-
stance, notice how easily the eye detects the mild curvilinearity in Figure 12.6.2
and the outlier in Figure 12.6.3(b). Notice also in Figure 12.6.3(b) that examination of
the marginal distributions of X and Y separately would not have revealed the outlier.

In addition to scatterplots of Y versus X, it is often useful to look at various dis-
plays of the residuals. A scatterplot of each residual against is called a
residual plot. Residual plots are very useful for detecting curvature; they can also re-
veal trends in the conditional standard deviation. Figure 12.6.8 shows the data from
Figure 12.6.2 together with a residual plot of those data.

A residual plot shows the data after the linear trend has been removed, which
makes it easier to see nonlinear patterns in the data.The curvature in Figure 12.6.8(a)
is apparent, but it is much more visible in the residual plot of Figure 12.6.8(b).

If the linear model holds, with no outliers, then the fitted regression line cap-
tures the trend in the data, leaving a random pattern in the residual plot. Thus, we

yNi(yi - yNi)

SEb1

Example
12.6.5

mX|Y

mY|X
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hope to see no striking pattern in a residual plot. For example, Figure 12.6.9 shows a
residual plot of the snake data of Example 12.2.1. The lack of unusual features in
this plot supports the use of a regression model for these data.
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Figure 12.6.8 (a) Data
displaying mild
curvilinearity with linear
regression line; (b) a
residual plot of the data
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Figure 12.6.9 Residual
plot of the snake data

If the condition of normality is met, then the distribution of the residuals should
look roughly like a normal distribution.* A normal probability plot of the residuals
provides a useful check of the normality condition. The normal probability plot of
the snake data in Figure 12.6.10 is fairly linear, which supports the use of the t test
and the confidence interval presented in Section 12.5.

*This is the basis for the 68% and 95% interpretations of se given in Section 12.3.

−0.5 0.5−1.5
Normal scores

1.5

−20

−10

0

10

20

R
es

id
ua

ls

Figure 12.6.10 Normal
probability plot of the
snake data
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The Use of Transformations

If the conditions of linearity, constancy of standard deviation,and normality are not met,
a remedy that is sometimes useful is to transform the scale of measurement of either Y,
or X, or both.The following example illustrates the use of a logarithmic transformation.

Growth of Soybeans A botanist placed 60 one-week-old soybean seedlings in individ-
ual pots. After 12 days of growth, she harvested, dried, and weighed 12 of the young
soybean plants. She weighed another 12 plants after 23 days of growth, and groups
of 12 plants each after 27 days, 31 days, and 34 days. Figure 12.6.11 shows the 60
plant weights plotted against days of growth; a smooth curve connects the group
means. It is easy to see from Figure 12.6.11 that the relationship between mean plant
weight and time is curvilinear rather than linear and that the conditional standard
deviation is not constant but is strongly increasing.22

Figure 12.6.12 shows the logarithms (base 10) of the plant weights, plotted
against days of growth together with the regression line. Notice that the logarithmic
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Figure 12.6.11 Weight of
soybean plants plotted
against days of growth
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transformation has simultaneously straightened the curve and more nearly equal-
ized the standard deviations. It would not be unreasonable to assume that the linear
model is valid for the variables and .Table
12.6.1 shows the means and standard deviations before and after the logarithmic
transformation. Note especially the effect of the transformation on the equality of
the SDs. �

X = days of growthY = log(dry weight)

Table 12.6.1 Summary of soybean growth data in original scale and after log
transformation

Dry weight (gm) Log(dry weight)

Days of growth Number of plants Mean SD Mean SD

12 12 0.50 0.06 -0.31 0.055

23 12 2.63 0.37 0.42 0.062

27 12 4.67 0.70 0.67 0.066

31 12 7.57 1.19 0.87 0.069

34 12 11.20 1.62 1.04 0.064

Exercises 12.6.1–12.6.9

12.6.1 In a metabolic study, four male swine were test-
ed three times: when they weighed 30 kg, again when
they weighed 60 kg, and again when they weighed 90 kg.
During each test, the experimenter analyzed feed intake
and fecal and urinary output for 15 days, and from these
data calculated the nitrogen balance, which is defined as
the amount of nitrogen incorporated into body tissue
per day. The results are shown in the accompanying
table.23

from the conditions, but you are asked to find two major
ones. No calculation is required.)

12.6.2 For measuring the digestibility of forage plants,
two methods can be used: The plant material can be fer-
mented with digestive fluids in a glass container, or it can
be fed to an animal. In either case, digestibility is ex-
pressed as the percentage of total dry matter that is di-
gested. Two investigators conducted separate studies to
compare the methods by submitting various types of
forage to both methods and comparing the results. Inves-
tigator A reported a correlation of between
the digestibility values obtained by the two methods,
and investigator B reported . The apparent dis-
crepancy between these results was resolved when it
was noted that one of the investigators had tested only
varieties of canary grass (whose digestibilities ranged
from 56% to 65%), whereas the other investigator had
used a much wider spectrum of plants, with digestibilities
ranging from 35% for corn stalks to 72% for timothy
hay.24

Which investigator (A or B) used only canary grass?
How does the different choice of test material explain the
discrepancy between the correlation coefficients?

12.6.3 Refer to the energy expenditure data of Exercise
12.2.7. Each subject’s expenditure value (Y) is the aver-
age of two measurements made on different occasions. It
might be proposed that it would be better to use the two
measurements as separate data points, thus yielding 14
observations rather than 7. If this proposed approach
were used, one of the conditions for inference would be
highly doubtful. Which one, and why?

r = 0.3

r = 0.8

Suppose these data are analyzed by linear regression.
With and , pre-
liminary calculations yield and . The
slope is , with standard error .
The t statistic is , which is not significant at any
reasonable significance level. According to this analysis,
there is insufficient evidence to conclude that nitrogen
balance depends on body weight under the conditions of
this study.

The above analysis is flawed in two ways. What are they?
(Hint: Look for ways in which the conditions for infer-
ence are not met. There may be several minor departures

ts = 0.53
SEb1

= 0.032b1 = 0.017
yq = 18.7xq = 60

Y = nitrogen balanceX = body weight

NITROGEN BALANCE (gm/day)
ANIMAL NUMBER BODY WEIGHT 30 kg 60 kg 90 kg

1 15.8 21.3 16.5

2 16.4 20.8 18.2

3 17.3 23.8 17.8

4 16.4 22.1 17.5

Mean 16.48 22.00 17.50
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12.6.4 Refer to the fungus growth data of Exercise 12.2.6.
In that exercise the investigator found 
Suppose a second investigator were to replicate the ex-
periment, using concentrations of 0, 2, 4, 6, 8, and 10 mg,
with two petri dishes at each concentration. Would you
predict that the value of r calculated by this second inves-
tigator would be about the same as that found in Exercise
12.2.6, smaller in magnitude, or larger in magnitude? 
Explain.

12.6.5 In the following scatterplot of the Ca pump data
of Exercise 12.2.8, one of the points is marked with an
“�.” In addition, there are two regression lines on the
plot:The solid line includes all of the data and the dashed
line omits the point marked “�.”

(a) Would we consider the point marked “�” an outlier?
Explain.

(b) Would we consider the point marked “�” a leverage
point? Explain.

(c) Noting the very small change in the slopes of 
the dashed and solid lines, would we consider 
the point marked “�” an influential observation? 
Explain.

r = -0.98754.

12.6.6 The following three residual plots, (i), (ii), and
(iii), were generated after fitting regression lines to the
following three scatterplots, (a), (b), and (c). Which
residual plot goes with which scatterplot? How do you
know?
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12.6.7 The following two residual plots, (i), and (ii), were
generated after fitting regression lines to the two scatterplots
(a) and (b).Which residual plot goes with which scatterplot?
How do you know?
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12.6.8 Sketch the residual plot that would be produced
by fitting a regression line to the following scatterplot.
One of the points is plotted with an “�.” Indicate this
point on the residual plot.

(a) Make a scatterplot of 
and fit a regression line to the data.

(b) Make a residual plot from the regression in part (a).
Then make a normal probability plot of the residu-
als. How do these plots call into question the use of a
linear model and regression inference procedures?

(c) Take the logarithm of each value of age. Make a scat-
terplot of and
fit a regression line to the data.

(d) Make a residual plot from the regression in part (c).
Next, make a normal probability plot of the residu-
als. Based on these plots, does a regression model
using a log scale, from part (c), seem appropriate?

Y =  log (age) versus X = diameter

Y = age versus X = diameter

X

Y

12.6.9 (Computer exercise) Researchers measured the
diameters of 20 trees in a central Amazon rain forest and
used 14C-dating to determine the ages of these trees. The
data are given in the following table.25 Consider the use
of diameter, X, as a predictor of age, Y.

DIAMETER (cm) AGE (yr) DIAMETER (cm) AGE (yr)

180 1372 115 512

120 1167 140 512

100 895 180 455

225 842 112 352

140 722 100 352

142 657 118 249

139 582 82 249

150 562 130 227

110 562 97 227

150 552 110 172

12.7 Precision in Prediction (Optional)
In Section 12.4 we learned that one very practical use of regression is prediction. In
this section we shall distinguish between the prediction of the mean Y value for a par-
ticular X value and the prediction of a single Y value for a particular X value. In par-
ticular, we will compare the precisions of these two very different types of predictions.
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Figure 12.7.1 95% confidence and prediction bands for arsenic concentrations of
rice. Plot (a) shows a 95% confidence band for the predicted mean arsenic
concentrations and the 95% confidence interval for the predicted mean arsenic
concentration when straw silicon is 40 g/kg. Plot (b) shows a 95% prediction band for
predicted arsenic concentrations and the 95% prediction interval for the predicted
arsenic concentration when straw silicon is 40 g/kg.

Confidence and Prediction Intervals

In Example 12.4.6 we used a regression line to make a prediction: .
Using this line again we could predict the mean arsenic concentration in rice from
plants with straw silicon concentrations of 40 g/kg to be 

. What if instead of estimating the mean arsenic concentration of all
plants with this silicon concentration, we wanted to predict the arsenic concentration
of a particular plant whose straw silicon concentration was 40 g/kg? Our estimate
would still be the same, .That is, whether we are estimating the mean
Y value or a single Y value for a particular value of X, we use the regression line in
the same manner. However, the precisions of these estimates are very different.

Predicting a single Y value is much less precise than predicting the mean Y
value because in addition to the uncertainty in the regression line (e.g., uncertainty
in our estimates of the slope and intercept of the line), there is also uncertainty due
to the inherent variability in Y values that have the same value of X. For example,
there is variability among the rice arsenic concentrations for all plants with straw sil-
icon concentrations of 40 g/kg (in fact we estimate this variability to be se). The two
graphs in Figure 12.7.1 illustrate the differences in our prediction precisions for the
two types of estimates.

yN = 96.77�g/kg

96.77�g/kg
yN = 197.17 - 2.51(40) =

yN = 197.17 - 2.51x

Figure 12.7.1 (a) displays a band representing all 95% confidence intervals for
predicting mean arsenic levels as well as the specific interval for 
marked by the vertical line. The confidence band reflects the uncertainty associated
with estimating the slope and intercept of the regression line. Notice that the inter-
vals are narrower (more precise) for straw silicon concentrations near the center of
the data set and much wider near the extreme X values. We are 95% confident that
the population regression line lies within this band. The widening of the
intervals on the end is a reflection of our uncertainty in our estimate of the slope of
the regression line.The width of the band in the middle expresses our uncertainty of
the overall height of the regression line (vis-à-vis b0).

b0 + b1x

X = 40g/kg
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In contrast, Figure 12.7.1 (b) displays a band representing all 95% prediction in-
tervals for predicting individual arsenic levels. The specific prediction interval for

is marked by the vertical line. Note how much wider this band is in (b) than
in (a). Example 12.7.1 illustrates the use of confidence and prediction intervals for
prediction in regression.

Arsenic Concentrations in Rice Figure 12.7.1 shows that for rice with straw silicon con-
centrations of 40 g/kg, the 95% confidence interval for the mean arsenic concentra-
tion is about 75 to 125 �g/kg. In other words, we are 95% confident that the mean
arsenic concentration of rice from plants with straw silicon concentrations of 40 g/kg
is 75 to 125 �g/kg. On the other hand, using the prediction interval we estimate that
95% of plants with straw silicon of 40 g/kg will have rice arsenic concentrations
roughly between 25 and 175 �g/kg. �

Recall that the regression line can be interpreted as a “line of averages,” and in-
dividuals will necessarily fall from this average. These graphs show us that we are
much less certain about saying, “rice from plants with X amount of straw silicon will
have Y amount of arsenic” than we are about saying “rice from plants with X amount
of straw silicon will, on average, have Y amount of arsenic.”

Computing the Intervals

Consider predicting or ; that is, predicting the mean or actual Y
value when . A 95% confidence interval for is given by

and a 95% prediction interval for is given by

with the critical value t0.025 determined from Student’s t distribution with
.

While these two formulas are very similar, note the extra “1” under the radical
sign in the prediction interval formula. This “1” factors in the added variability asso-
ciated with trying to make a prediction for an individual rather than for a popula-
tion mean.

As we have seen in Figure 12.7.1, both confidence and prediction intervals are
wider when we are making predictions far from the center of our data. Both formulas

account for this additional uncertainty through the term .This term will be 

large when x* is far from and thus increase the width of the interval. Note that
when the confidence interval formula can reduce to a very familiar form:

which looks very similar to the formula for a confidence interval 

for a population mean from Chapter 6.
Most statistical software can compute and display confidence and prediction

bands quite easily.

yN ; t0.025a se1n b ,

x… = xq
xq

1x… - xq )2

(n - 1)sx
2

df = n - 2

yN ; t0.025seC1 +
1
n

+
1x… - xq )2

(n - 1)sx
2

Y|X = x…

yN ; t0.025seC1
n

+
1x… - xq )2

(n - 1)sx
2

mY|X=x…X = x…
Y|X = x…mY|X=x…

Example
12.7.1

X = 40
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Exercises 12.7.1–12.7.3

12.7.1 In a study of heat stress on cows, researchers
measured the rectal temperature (°C) (Y) and relative
humidity (%) (X) for 1,280 lactating cows.26 The follow-
ing graph displays the data and regression line (solid
line). There are two other pairs of lines on this graph:
dashed and dotted. One pair of lines shows the 95% con-
fidence band and the other shows the 95% prediction
band.

(a) Which pair of lines shows the confidence band? What
does this band tell us?

(b) Which pair of lines shows us the prediction band?
What does this band tell us?

(c) If the data set were smaller, describe what would
happen to these bands. Would we have narrower or
wider bands around the regression line?
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12.7.2 (Continuation of 12.7.1) Suppose 5,000 addi-
tional cows were included in the sample and a similar
plot of the data, regression line, confidence and predic-
tion bands were made of this new larger sample. Would

the prediction band get much narrower? Explain your
reasoning.

12.7.3 The following graph displays the regression line
and 95% confidence and prediction bands for the peak
respiration flow data from Exercise 12.3.8.
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(a) Using the graph to justify your answer, would it be
very surprising to find a 195-cm-tall individual with a
peak flow rate above 900 l/min?

(b) Using the graph to justify your answer, would it be
surprising to find a large group of 195-cm-tall individ-
uals to have a mean peak flow rate above 900 l/min?

Regression and the t Test
When there are several Y values for each of two values of X, one could analyze the
data with a two-sample t test or with a regression analysis. Each approach uses the
data to estimate the conditional mean of Y for each fixed X; these parameters are
estimated by the fitted line in the regression approach and by the individ-
ual sample means in the t test approach. To test the null hypothesis of no depend-
ence of Y on X, each approach translates the null hypothesis into its own terms. The
following example illustrates the approaches.

Toluene and the Brain In Chapter 7 we analyzed data on norepinephrine (NE) con-
centrations in the brains of six rats exposed to toluene and of five control rats. The
data are reproduced in Table 12.8.1.

Example
12.8.1

Y
b0 + b1x

12.8 Perspective
To put the methods of Chapter 12 in perspective, we will discuss their relationship
to methods described in earlier chapters, and to methods that might be included in
a second statistics course. We begin by relating regression to the methods of
Chapters 7 and 11.

Table 12.8.1 NE concentrations (ng/gm)

Toluene Control

543 535

523 385

431 502

635 412

564 387

549

n 6 5

yq 540.83 444.20

s 66.12 69.64

In Chapter 7 the null hypothesis

was tested using the (unpooled) two-sample t test. The test statistic was

ts =
(540.83 - 444.20) - 0

41.195
= 2.346

H0:m1 - m2 = 0
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These data could be analyzed using a pooled t test (or, equivalently, with analysis of
variance). The pooled variance is

and the pooled SE is

This leads to a test statistic of

which is not much different than the unpooled t test result.
These data can also be analyzed with a regression model. To use regression, we

define an indicator variable—a variable that indicates group membership—as fol-
lows. Let for observations in the control group and let for observa-
tions in the toluene group. Then we can present the data graphically with a
scatterplot, as in Figure 12.8.1.

X = 1X = 0

ts =
(540.83 - 444.20) - 0

41.00
= 2.357

SEpooled = 67.71C1
6

+
1
5

= 41.00

spooled
2 =

(6 - 1)66.122 + (5 - 1)69.642

(6 + 5 - 2)
= 4584.24 = 67.712
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Figure 12.8.1 NE
concentration data.
represents the control
group; represents
the toluene group

X = 1

X = 0

We can analyze the data in the scatterplot with the linear model

which states that .
The linear model states that for rats in the control group, the (population) mean

NE concentration is given by

mY|X=0 = b0 + b1(0) = b0

mY|X = b0 + b1X

Y = b0 + b1X + e



And, for rats in the toluene group, NE concentration is given by

The difference between the two group means is b1. Thus, the null hypothesis

is equivalent to the null hypothesis

The fitted regression line is . Note that when , the 
fitted regression line gives a value of , which is the sample mean of 
the control group. When , the fitted regression line gives a value of

, which is the sample mean of the toluene group.That is,
the sample value of the slope is equal to the change in the sample means when going
from the control group ( ) to the toluene group ( ), as shown in
Figure 12.8.2.

X = 1X = 0

yN = 444.2 + 96.63 = 540.83
X = 1

yN = 444.2
X = 0yN = 444.2 + 96.63x

H0:b1 = 0

H0: mY|X=0 - mY|X=1 = 0

mY|X=1 = b0 + b1(1) = b0 + b1
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concentration data with
regression line added

The test statistic for testing the hypothesis is

This is identical to the previous pooled two-sample t test statistic. (Note that the
regression analysis assumes that is constant. Thus, regression is 
similar to the pooled t test, rather than the unpooled t test.) The following com-
puter output shows the coefficients for the fitted regression line as well as the t
statistic.

sY|X = se

ts =
96.63
41.0

= 2.36

H0: b1 = 0
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Table 12.8.2 Platelet calcium (nM) in two groups of subjects

Normal blood pressure High blood pressure

yq 107.9 168.2

s 16.1 31.7

n 38 45

The regression equation is

Predictor Coef SE Coef T P

Constant 444.20 30.28 14.67 0.000

X 96.63 41.00 2.36 0.043

Analysis of Variance

Source DF SS MS F P

Regression 1 25467 25467 5.56 0.043

Residual Error 9 41256 4584

Total 10 66723 �

The following example compares the regression approach and the two-sample
approach to a data set for which (unlike Example 12.8.1) X varies within as well as
between the samples.

Blood Pressure and Platelet Calcium In Example 12.5.3 we described blood pressure
(X) and platelet calcium (Y) measurements on 38 subjects. Actually, the study in-
cluded two groups of subjects: 38 volunteers with normal blood pressure, selected
from hospital lab personnel and other nonpatients, and 45 patients with a diagnosis
of high blood pressure. Table 12.8.2 summarizes the platelet calcium measurements
in the two groups and Figure 12.8.3 shows the blood pressure and calcium measure-
ments for all 83 subjects.4

Two ways to analyze the data are (1) as two independent samples and (2) by re-
gression analysis. To test for a relationship between blood pressure and platelet cal-
cium (1) a two-sample t test of can be applied to Table 12.8.2; (2) a
regression t test of can be applied to the data in Figure 12.8.3. The two-
sample t statistic (unpooled) is and the regression t statistic is .
Both of these are highly significant, but the latter is more so because the regression
analysis extracts more information from the data.

For these data, the regression approach is more enlightening and convincing
than the two-sample approach. Figure 12.8.3 suggests that platelet calcium is
correlated with blood pressure, not only between, but also within the two 
groups. Relevant regression analyses would include (1) testing for a correlation
within each group separately (as in Examples 12.2.3 and 12.5.3); (2) testing for 
an overall correlation (as in the previous paragraph); (3) testing whether the re-
gression lines in the two groups are identical (using methods not described in
this book).

ts = 20.8ts = 11.2
H0:b1 = 0

H0:m1 = m2

Example
12.8.2

R-Sq(adj) = 31.3%R-Sq = 38.2%S = 67.7049

NE = 444 + 96.6X
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Formal testing aside, notice the advantage of the scatterplot as a tool for under-
standing the data and for communicating the results. Figure 12.8.3 provides
eloquent testimony to the reality of the relationship between blood pressure and
platelet calcium. (We emphasize once again, however, that a “real” relationship is
not necessarily a causal relationship. Further, even if the relationship is causal, the
data do not indicate the direction of causality—that is, whether high calcium causes
high blood pressure or vice versa.*) �

Example 12.8.2 illustrates a general principle: If quantitative information 
on a variable X is available, it is usually better to use that information than to 
ignore it.

Extensions of Least Squares

We have seen that the classical method of fitting a straight line to data is based on
the least-squares criterion. This versatile criterion can be applied to many other sta-
tistical problems. For instance, in curvilinear regression, the least-squares criterion is
used to fit curvilinear relationships such as

Another application is multiple regression and correlation, in which the least-
squares criterion is used to fit an equation relating Y to several X variables—X1, X2,
and so on; for instance,

The following example illustrates both curvilinear and multiple regression.

Y = b0 + b1X1 + b2X2 + e

Y = b0 + b1X + b2X
2 + e
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Figure 12.8.3 Blood
pressure and platelet
calcium for 83 subjects

*In fact, the authors of the study remark that “It remains possible . . . that an increased intracellular calcium
concentration is a consequence rather than a cause of elevated blood pressure.”
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Serum Cholesterol and Blood Pressure As part of a large health study, various
measurements of blood pressure, blood chemistry, and physique were made on
2,599 men.27 The researchers found a positive correlation between blood pressure
and serum cholesterol ( for systolic blood pressure). But blood pressure
and serum cholesterol are also related to age and physique. To untangle the rela-
tionships, the researchers used the method of least squares to fit the following
equation:

where

Note that the regression is curvilinear with respect to age (X1) and linear in the
other X variables.

By applying multiple regression and correlation analysis, the investigators de-
termined that there is little or no correlation between blood pressure and serum
cholesterol, after accounting for any relationship between blood pressure and age
and ponderal index. They concluded that the observed correlation between serum
cholesterol and blood pressure was an indirect consequence of the correlation of
each of these with age and physique. �

Nonparametric and Robust Regression and Correlation

We have discussed the classical least-squares methods for regression and correlation
analysis. There are also many excellent modern methods that are not based on
the least-squares criterion. Some of these methods are robust—that is, they work
well even if the conditional distributions of Y given X have long straggly tails or out-
liers. The nonparametric methods assume little or nothing about the form of
dependence—linear or curvilinear—of Y on X, or about the form of the conditional
distributions.

Analysis of Covariance

Sometimes regression ideas can add greatly to the power of a data analysis, even if
the relationship between X and Y is not of primary interest. The following is an
example.

Caterpillar Head Size Can diet affect the size of a caterpillar’s head? Such an effect is
plausible, because a caterpillar’s chewing muscles occupy a large part of the head.
To study the effect of diet, a biologist raised caterpillars (Pseudaletia unipuncta) on
three different diets: diet 1, an artificial soft diet; diet 2, soft grasses; and diet 3,
hard grasses. He measured the weight of the bead and of the entire body in the
final stage of larval development. The results are shown in Figure 12.8.4, where

is plotted against , with different sym-X =  ln(body weight)Y =  ln(head weight)

Example
12.8.4

X4 = Ponderal index (height divided by the cube root of weight)

X3 = Blood glucose

X2 = Serum cholesterol

X1 = Age

Y = Systolic blood pressure

Y = b0 + b1X1 + c1X1
2 + b2X2 + b3X3 + b4X4

r = 0.23

Example
12.8.3
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Example 12.8.4 shows how comparison of several groups with respect to a vari-
able Y can be strengthened by using information on an auxiliary variable X that is
correlated with Y. A classical method of statistical analysis for such data is analysis
of covariance, which proceeds by fitting regression lines to the (X, Y) data. But even
without this formal technique, an investigator can often clarify the interpretation of
data simply by constructing a scatterplot like Figure 12.8.4. Plotting the data against
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Figure 12.8.5 Head
weight (on a logarithmic
scale) for caterpillars on
three different diets
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Figure 12.8.4 Head
weight versus body weight
(on logarithmic scales) for
caterpillars on three
different diets

bols for the three diets.28 Note that the effect of diet is striking; there is virtually no
overlap between the three groups of points. But if we were to ignore X and con-
sider Y only, as displayed in Figure 12.8.5, the effect of diet would be much less
pronounced. �
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X has the visual effect of removing that part of the variability in Y which is account-
ed for by X, causing the treatment effect to stand out more clearly against the resid-
ual background variation.

Logistic Regression

Regression and correlation are used to analyze the relationship between two
quantitative variables, X and Y. Sometimes data arise in which a quantitative vari-
able X is used to predict the response of a categorical variable Y. For example, we
might wish to use level as a predictor of whether or not a person
has heart disease. Here we could define a variable Y as 1 if a person has heart dis-
ease and 0 otherwise. We could then study how Y depends on X. When the re-
sponse variable is dichotomous, as in this case, a technique known as logistic
regression can be used to model the relationship. For example, logistic regression
could be used to model how the probability of heart disease depends on blood
pressure.

Example 12.8.5 provides a more detailed look at the use of logistic regression.

Esophageal Cancer Esophageal cancer is a serious and very aggressive disease. Scien-
tists conducted a study of 31 patients with esophageal cancer in which they studied
the relationship between the size of the tumor that a patient had and whether or not
the cancer had spread (metastasized) to the lymph nodes of the patient. In this study
the response variable is dichotomous: if the cancer had spread to the lymph
nodes and if not.The predictor variable is the size (recorded as the maximum
dimension, in cm) of the tumor found in the esophagus. The data are given in
Table 12.8.3 and plotted in Figure 12.8.6.29

Y = 0
Y = 1

Example
12.8.5

X = cholesterol

Table 12.8.3 Esophageal cancer data

Patient
number

Tumor size 
(cm), X

Lymph node 
metastasis, Y

Patient
number

Tumor size 
(cm), X

Lymph node 
metastasis, Y

1 6.5 1 17 6.2 1

2 6.3 0 18 2.0 0

3 3.8 1 19 9.0 1

4 7.5 1 20 4.0 0

5 4.5 1 21 3.0 1

6 3.5 1 22 6.0 1

7 4.0 0 23 4.0 0

8 3.7 0 24 4.0 0

9 6.3 1 25 4.0 0

10 4.2 1 26 5.0 1

11 8.0 0 27 9.0 1

12 5.2 1 28 4.5 1

13 5.0 1 29 3.0 0

14 2.5 0 30 3.0 1

15 7.0 1 31 1.7 0

16 5.3 0
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The idea of logistic regression is to model the relationship between X and Y by
fitting a response curve that is always between 0 and 1. With values bound between
0 and 1, the logistic regression model can be used to estimate the probability 
(e.g., metastasis) for a given value of X (e.g., tumor size). Thus, unlike linear regres-
sion, in which we model Y as a linear function of X (which does not remain between
0 and 1), with logistic regression we model the relationship between X and Y as hav-
ing an “S” shape, as shown in Figure 12.8.7.

Y = 1
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Figure 12.8.6 Lymph
node metastasis, Y, as a
function of tumor size, X
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Figure 12.8.7 Lymph
node metastasis, Y, as a
function of tumor size, X,
with smooth curve added

One way to begin understanding the data is to form groups on the basis of size,
X, and calculate for each group the proportion of the Y values that are 1’s. (This is
somewhat analogous to finding the graph of averages described in Section 12.3, ex-
cept that here we group together data points with differing X values.) Table 12.8.4
provides such a summary, which is shown graphically in Figure 12.8.8. Note that the
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Table 12.8.4 Esophageal cancer data in groups

Size
range

Points with 
Y = 1

Points with 
Y = 0

Fraction 
Y = 1

Proportion
Y = 1

(1.5, 3.0] 2 4 2/6 0.33

(3.0, 4.5] 5 6 5/11 0.45

(4.5, 6.0] 4 1 4/5 0.80

(6.0, 7.5] 5 1 5/6 0.83

(7.5, 9.0] 2 1 2/3 0.67

proportion of 1’s (that is, the proportion of patients for whom the cancer has metas-
tasized) increases as tumor size increases (except for the last category of (7.5, 9],
which has only three cases).

We can fit a smooth, continuous function to the data, to smooth out the per-
centages in the last column of Table 12.8.4. We can also impose the condition that
the function be monotonically increasing, meaning that the probability of metasta-
tis ( ) strictly increases as tumor size increases. To do this, we use a computer
to fit a logistic response function.* The fitted logistic response function for the
esophageal cancer data is

For example, suppose the size of a tumor is 4.0 cm. Then the predicted probability
that the cancer has metastasized is

e-2.086 +  0.5117(4)

1 + e-2.086 +  0.5117(4) =
e-0.0392

1 + e-0.0392 =
0.96156

1 + 0.96156
= 0.49

Pr {Y = 1} =
e-2.086 +  0.5117 *  size

1 + e-2.086 +  0.5117 *  size

Y = 1
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Figure 12.8.8 Sample
proportion of patients with
lymph node metastasis
( ) for patients
grouped by tumor size, X
Y = 1

*Fitting a logistic model is quite a bit more complicated than is fitting a linear regression model. A technique
known as maximum likelihood estimation is commonly used, with the help of a computer.



On the other hand, suppose the size of a tumor is 8.0 cm. Then the predicted proba-
bility that the cancer has metastasized is

We can calculate a predicted probability that for each value of X. Figure 12.8.9
shows a graph of such predictions, which have, generally speaking, an S shape. �

Y = 1

e-2.086 +  0.5117 *  8

1 + e-2.086 +  0.5117 *  8 =
e2.0076

1 + e2.0076 =
7.4454

1 + 7.4454
= 0.88
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Figure 12.8.9 Predicted
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Figure 12.8.10 Logistic
response function for the
cancer data, shown over a
larger range

The S shape of the logistic curve is easier to see if we extend the range of X, as
shown in Figure 12.8.10. As X grows, the logistic curve approaches, but never ex-
ceeds, 1. Likewise, if we were to extend the curve into the region where X is less than
zero we would see that as X gets smaller and smaller, the logistic curve approaches,
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Correlation Coefficient

Fact 12.3.1: r2 L
sy

2 - se2

sy
2 = 1 -

se
2

sy
2

r =
1

n - 1 a
n

i=1
a x - xq
sx

b a y - yq
sy

b

Fitted Regression Line

where

Residuals:

Residual Sum of Squares:

Residual Standard Deviation:

se = CSS(resid)
n - 2

SS(resid) = a 1yi - yNi22

yi - yNi  where yNi = b0 + b1xi

b0 = yq - b1xq

b1 = r * a sy
sx
b

yN = b0 + b1x

but never drops below, 0. (Of course, in the setting of Example 12.8.5 it does not
make sense to talk about tumor sizes that are negative.Thus, we only show the logis-
tic curve for positive values of X.)

In general, if we have a logistic response function

with b1 positive, then as X grows, approaches one and as X gets smaller,
approaches zero. Thus, unlike a linear regression model, a logistic curve

stays between zero and one, which makes it appropriate for modeling a response
probability.

12.9 Summary of Formulas
For convenient reference, we summarize the formulas presented in Chapter 12.

Pr {Y = 1}
Pr {Y = 1}

 Pr {Y = 1} =
eb0 + b1x

1 + eb0 + b1x
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Inference
Standard Error of b1:

95% confidence interval for b1:

Test of or :

Critical values for the test and confidence interval are determined from Stu-
dent’s t distribution with .df = n - 2

ts =
b1

SEb1

= rC n - 1

1 - r2

H0:r = 0H0:b1 = 0

b1 ; t0.025SEb1

SEb1
=

se
sx1n - 1

Prediction

A 95% confidence interval for is given by

A 95% prediction interval for is given by

Critical values for intervals are determined from Student’s t distribution with
.df = n - 2

yN ; t0.025seC1 +
1
n

+
1x… - xq22
(n - 1)sx

2

Y|X = x…

yN ; t0.025seC1
n

+
1x… - xq22
(n - 1)sx

2

mY|X=x…

Exercises 12.S.1–12.S.22

12.S.1 In a study of the Mormon cricket (Anabrus simplex),
the correlation between female body weight and ovary
weight was found to be . The standard deviation
of the ovary weights of the crickets was 0.429 g. Assuming
that the linear model is applicable, estimate the standard
deviation of ovary weights of crickets whose body weight
is 4 g.30

12.S.2 In a study of crop losses due to air pollution,plots of
Blue Lake snap beans were grown in open-top field cham-
bers, which were fumigated with various concentrations of
sulfur dioxide.After a month of fumigation, the plants were
harvested and the total yield of bean pods was recorded for
each chamber.The results are shown in the table.31

r = 0.836

CONCENTRATION (ppm)X = SULFUR DIOXIDE

0 0.06 0.12 0.30

1.15 1.19 1.21 0.65

Y = yield 1.30(kg) 1.64 1.00 0.76

1.57 1.13 1.11 0.69

Mean 1.34 1.32 1.11 0.70

Preliminary calculations yield the following results.

(a) Calculate the linear regression of Y on X.
(b) Plot the data and draw the regression line on your

graph.
(c) Calculate se. What are the units of se?

12.S.3 Refer to Exercise 12.S.2.
(a) Assuming that the linear model is applicable, find

estimates of the mean and the standard deviation of
yields of beans exposed to 0.24 ppm of sulfur dioxide.

(b) Which condition of the linear model appears doubt-
ful for the snap bean data?

12.S.4 Refer to Exercise 12.S.2. Consider the null hy-
pothesis that sulfur dioxide concentration has no effect
on yield.Assuming that the linear model holds, formulate
this as a hypothesis about the true regression line. Use
the data to test the hypothesis against a directional alter-
native. Let .a = 0.05

r = -0.8506  SS(resid) = 0.2955

sX = 0.11724 sY = 0.31175

xq = 0.12              yq = 1.117
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12.S.5 Another way to analyze the data of Exercise
12.S.2 is to take each treatment mean as the observation
Y; then the data would be summarized as in the accompa-
nying table.

(a) For the regression of mean yield on X, calculate the
regression line and the residual standard deviation,
and compare with the results of Exercise 12.S.2. Ex-
plain why the discrepancy is not surprising.

(b) What proportion of the variability in mean yield is
explained by the linear relationship between mean
yield and sulfur dioxide? Using the data in Exercise
12.S.5, what proportion of the variability in individual
chamber yield is explained by the linear relationship
between individual chamber yield and sulfur dioxide?
Explain why the discrepancy is not surprising.

12.S.6 In a study of the tufted titmouse (Parus bicolor),
an ecologist captured seven male birds, measured their
wing lengths and other characteristics, and then marked
and released them. During the ensuing winter, he repeat-
edly observed the marked birds as they foraged for in-
sects and seeds on tree branches. He noted the branch
diameter on each occasion, and calculated (from 50 ob-
servations) the average branch diameter for each bird.
The results are shown in the table.32

(a) Calculate se and specify the units. Verify the approxi-
mate relationship between sY and se, and r.

(b) Do the data provide sufficient evidence to conclude
that the diameter of the forage branches chosen by
male titmice is correlated with their wing length?
Test an appropriate hypothesis against a nondirec-
tional alternative. Let .

(c) The test in part (a) was based on 7 observations, but
each branch diameter value was the mean of 50 ob-
servations. If we were to test the hypothesis of part (a)
using the raw numbers, we would have 350 observa-
tions rather than only 7. Why would this approach
not be valid?

12.S.7 (Continuation of 12.S.6) A scatterplot and fitted
regression line of the data from Exercise 12.S.6 follow.
The individual birds are labeled in the plot.

a = 0.05

(a) Which bird/point has the largest regression residual?

(b) Which bird(s)/points(s) have the most leverage?

(c) Are there any birds/points that are influential?

(d) Invent your own bird observation of
and diameter that

would be an example of a regression outlier.

(e) Invent your own bird observation of
and diameter that

would be an example of a leverage point.

12.S.8 Exericise 12.3.7 deals with data on the relation-
ship between body length and jumping distance of bull-
frogs. A third variable that was measured in that study
was the mass of each bullfrog. The following table shows
these data.16

y = branchx = wing length

y = branchx = wing length

SULFUR DIOXIDE X (ppm) MEAN YIELD Y (kg)

0.00 1.34

0.06 1.32

0.12 1.11

0.30 0.70

Mean 0.1200 1.1175

SD 0.12961 0.29714

SS(resid) = 0.007018
r = -0.98666

BIRD
WING LENGTH 

X (mm)
BRANCH DIAMETER 

Y (cm)

1 79.0 1.02

2 80.0 1.04

3 81.5 1.20

4 84.0 1.51

5 79.5 1.21

6 82.5 1.56

7 83.5 1.29

Mean 81.429 1.2614

SD 1.98806 0.21035

SS(resid) = 0.09415
r = 0.80335
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BULLFROG LENGTH X (mm) MASS Y (g)

1 155 404
2 127 240

3 136 296

4 135 303

5 158 422

6 145 308

7 136 252

8 172 533.8

9 158 470

10 162 522.9

11 162 356

Mean 149.636 373.427
SD 14.4725 104.2922

Preliminary calculations yield the following results:

(a) Calculate the linear regression of Y on X.
(b) Interpret the value of the slope of the regression line,

b1, in the context of this setting.
(c) Calculate and interpret the value of se in the context

of this setting.
(d) Calculate and interpret the value of r2 in the context

of this problem.

12.S.9 (Continuation of 12.S.8). A residual plot and nor-
mal probability plot from the linear regression of Y on X
based on the bullfrog mass data in Exercise 12.S.8 follow.

Use these plots to comment on the required conditions
for inference in regression. Is there any reason to sub-
stantially doubt that these conditions are met?

r = 0.90521 SS(resid) = 19642
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12.S.10 An exercise physiologist used skinfold measure-
ments to estimate the total body fat, expressed as a per-
centage of body weight, for 19 participants in a physical
fitness program. The body fat percentages and the body
weights are shown in the table.33

PARTICIPANT
WEIGHT

X (kg)
FAT 

Y (%) PARTICIPANT
WEIGHT

X (kg)
FAT 

Y (%)

1 89 28 11 57 29

2 88 27 12 68 32

3 66 24 13 69 35

4 59 23 14 59 31

5 93 29 15 62 29

6 73 25 16 59 26

7 82 29 17 56 28

8 77 25 18 66 33

9 100 30 19 72 33

10 67 23

Actually, participants 1 to 10 are men, and participants 11
to 19 are women. A summary and graph of the data for
men, women, and both sexes combined into a single sam-
ple follow.

MEN (n = 10) WOMEN (n = 9) BOTH SEXES (n = 19)

yq = 26.30
xq = 79.40

yq = 30.67
xq = 63.1

yq = 28.37
xq = 71.68

sY = 2.6269
sX = 13.2430

sY = 2.8723
sX = 5.7975

sY = 3.4835
sX = 13.1320

r = 0.9352 r = 0.8132 r = 0.0780
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(a) Compute the regression equations for the males and
females separately.

(b) The equation to the fitted regression line for both
sexes combined, which is shown on the plot, is

. How does the slope of this line
compare to the slopes you computed in part (a)?
Can you explain the discrepancy?

(c) Examine the correlation coefficients for (i) the males,
(ii) the females, and (iii) both sexes combined. Do these
values agree with your reasoning provided in part (b)?

12.S.11 Refer to the respiration rate data of Exercise
12.3.6. Construct a 95% confidence interval for b1.

12.S.12 The following plot is a residual plot from fitting a
regression model to some data. Make a sketch of the scat-
terplot of the data that led to this residual plot. (Note:
There are two possible scatterplots—one in which b1 is
positive and one in which b1 is negative.)

yN = 26.88 + 0.021x
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12.S.13 Biologists studied the relationship between em-
bryonic heart rate and egg mass for 20 species of birds.
They found that heart rate, Y, has a linear relationship
with the logarithm of egg mass, X. The data are given in
the following table.34

SPECIES

EGG
MASS

(g)

LOG-
(EGG MASS) 

X

HEART 
RATE Y

(beats/min)

Zebra finch 0.96 -0.018 335

Bengalese finch 1.10 0.041 404

Marsh tit 1.39 0.143 363

Bank swallow 1.42 0.152 298

Great tit 1.59 0.201 348

Varied tit 1.69 0.228 356

Tree sparrow 2.09 0.320 335

Budgerigar 2.19 0.340 314

House martin 2.25 0.352 357

Japenese bunting 2.56 0.408 370

Red-cheeked
starling

4.14 0.617 358

Cockatiel 5.08 0.706 300

Brown-eared
bulbul

6.40 0.806 333

Domestic pigeon 17.10 1.233 247

Fantail pigeon 19.70 1.294 267

Homing pigeon 19.80 1.297 230

Barn owl 20.10 1.303 219

Crow 20.50 1.312 297

Cattle egret 27.50 1.439 251

Lanner falcon 41.20 1.615 242

Mean 9.94 0.690 311

For these data the fitted regression equation is

and

(a) Interpret the value of the intercept of the regression
line, b0, in the context of this setting.

(b) Interpret the value of the slope of the regression line,
b1, in the context of this setting.

(c) Calculate se and specify the units.
(d) Interpret the value of se in the context of this setting.

12.S.14 (Computer exercise) The accompanying table
gives two data sets: (A) and (B). The values of X are the
same for both data sets and are given only once.

SS(resid) = 15748.6

yN = 368.06 - 82.452x
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(A) (B) (A) (B)
X Y Y X Y Y

0.61 0.88 0.96 2.56 1.97 1.20

0.93 1.02 0.97 2.74 2.02 3.59

1.02 1.12 0.07 3.04 2.26 3.09

1.27 1.10 2.54 3.13 2.27 1.55

1.47 1.44 1.41 3.45 2.43 0.71

1.71 1.45 0.84 3.48 2.57 3.05

1.91 1.41 0.32 3.79 2.53 2.54

2.00 1.59 1.46 3.96 2.73 3.33

2.27 1.58 2.29 4.12 2.92 2.38

2.33 1.66 2.51 4.21 2.96 3.08

(a) Generate scatterplots of the two data sets.
(b) For each data set (i) estimate r visually and (ii) calcu-

late r.
(c) For data set (a), multiply the values of X by 10, and

multiply the values of Y by 3 and add 5. Recalculate r
and compare with the value before the transforma-
tion. How is r affected by the linear transformation?

(d) Find the equations of the regression lines and verify
that the regression lines for the two data sets are vir-
tually identical (even though the correlation coeffi-
cients are very different).

(e) Draw the regression line on each scatterplot.
(f) Construct a scatterplot in which the two data sets are

superimposed, using different plotting symbols for
each data set.

12.S.15 (Computer exercise) This exercise shows the
power of scatterplots to reveal features of the data that
may not be apparent from the ordinary linear regression
calculations. The accompanying table gives three ficti-
tious data sets, A, B, and C. The values of X are the same
for each data set, but the values of Y are different.35

DATA SET: A B C
X Y Y Y

10 8.04 9.14 7.46

8 6.95 8.14 6.77

13 7.58 8.74 12.74

9 8.81 8.77 7.11

11 8.33 9.26 7.81

14 9.96 8.10 8.84

6 7.24 6.13 6.08

4 4.26 3.10 5.39

12 10.84 9.13 8.15

7 4.82 7.26 6.42

5 5.68 4.74 5.73

(a) Verify that the fitted regression line is almost exactly
the same for all three data sets.Are the residual stan-
dard deviations the same? Are the values of r the
same?

(b) Construct a scatterplot for each of the data sets.
What does each plot tell you about the appropriate-
ness of linear regression for the data set?

(c) Plot the fitted regression line on each of the scatter-
plots.

12.S.16 (Computer exercise) In a pharmacological study,
12 rats were randomly allocated to receive an injection of
amphetamine at one of two dosage levels or an injection
of saline. Shown in the table is the water consumption of
each animal (ml water per kg body weight) during the 24
hours following injection.36

DOSE OF AMPHETAMINE (ml/kg)
0 1.25 2.5

122.9 118.4 134.5

162.1 124.4 65.1

184.1 169.4 99.6

154.9 105.3 89.0

(a) Calculate the regression line of water consumption
on dose of amphetamine, and calculate the residual
standard deviation.

(b) Construct a scatterplot of water consumption against
dose.

(c) Draw the regression line on the scatterplot.
(d) Use linear regression to test the hypothesis that am-

phetamine has no effect on water consumption
against the alternative that amphetamine tends to re-
duce water consumption. (Use .)

(e) Use analysis of variance to test the hypothesis that
amphetamine has no effect on water consumption.
(Use .) Compare with the result of part
(d).

(f) What conditions are necessary for the validity of the
test in part (d) but not for the test in part (e)?

(g) Calculate the pooled standard deviation from the
ANOVA, and compare it with the residual standard
deviation calculated in part (a).

12.S.17 (Computer exercise) Consider the Amazon tree
data from Exercise 12.6.9. The researchers in this study
were interested in how age, Y, is related to

where growth rate is defined as
diameter/age (i.e., cm of growth per year).
(a) Create the variable “growth rate” by dividing each

diameter by the corresponding tree age.
(b) Make a scatterplot of versus

and fit a regression line to the data.X = growth rate
Y = age

X = “growth rate,”

a = 0.05

a = 0.05



(c) Make a residual plot from the regression in part (b).
Then make a normal probability plot of the residu-
als. How do these plots call into question the use of a
linear model and regression inference procedures?

(d) Take the logarithm of each value of age and of each
value of growth rate. Make a scatterplot of

and fit a
regression line to the data.

(e) Make a residual plot from the regression in part (d).
Then make a normal probability plot of the residu-
als. Based on these plots, does a regression model in
log scale, from part (d), seem appropriate?

12.S.18 (Computer exercise) Researchers measured the
blood pressures of 22 students in two situations: when the
students were relaxed and when the students were taking
an important examination. The table lists the systolic and
diastolic pressures for each student in each situation.37

Y = log(age) versusX = log(growth rate)

(c) Make a scatterplot of Y versus X and fit a regression
line to the data.

(d) Make a residual plot from the regression in part (c).

(e) Note the outlier in the residual plot [and on the scat-
terplot from part (c)]. Delete the outlier from the
data set. Then repeat parts (c) and (d).

(f) What is the fitted regression model (after the outlier
has been removed)?

12.S.19 (Continuation of 12.S.18) Consider the data from
Exercise 12.S.18, part (f).
(a) Construct a 95% confidence interval for b1.
(b) Interpret the confidence interval from part (a) in the

context of this setting.

12.S.20 Selenium (Se) is an essential element which has
been shown to play an important role in protecting ma-
rine mammals against the toxic effects of mercury (Hg)
and other metals. It has been suggested that metal con-
centrations in marine mammal teeth can potentially be
used as bioindicators for body burden. Twenty Belugas
(Delphinapterus leucas) were harvested from the
Mackenzie Delta, Northwest Territories, in 1996 and
2002, as part of an annual traditional Inuit hunt. Tooth
and liver Se concentrations are reported in the table,
summarized, and graphed.38

DURING EXAM RELAXED
SYSTOLIC 
PRESSURE
(mm Hg)

DIASTOLIC 
PRESSURE
(mm Hg)

SYSTOLIC 
PRESSURE
(mm Hg)

DIASTOLIC 
PRESSURE
(mm Hg)

132 75 110 70

124 170 90 75

110 65 90 65

110 65 110 80

125 65 100 55

105 70 90 60

120 70 120 80

125 80 110 60

135 80 110 70

105 80 110 70

110 70 85 65

110 70 100 60

110 70 120 80

130 75 105 75

130 70 110 70

130 70 120 80

120 75 95 60

130 70 110 65

120 70 100 65

120 80 95 65

120 70 90 60

130 80 120 70
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(a) Compute the change in systolic pressure by subtract-
ing systolic pressure when relaxed from systolic pres-
sure during the exam; call this variable X.

(b) Repeat part (a) for diastolic pressure. Call the result-
ing variable Y.

(a) Can we regard the sample correlation between Tooth
(Y) and Liver (X) selenium, , as an esti-
mate of the population correlation coefficient?
Briefly explain.

(b) If the circled point were removed from the data set,
would the sample correlation listed in part (a) in-
crease, decrease, or stay about the same?

r = 0.53726
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(c) If the roles of X and Y were reversed (i.e.,
and ), would the sample corre-
lation listed in part (a) increase, decrease, or stay
about the same?

(d) Is the circled point on the plot a leverage and/or in-
fluential point? Explain briefly.

(e) Is the circled point on the plot an outlier?

X = Tooth Selenium
Y = Liver

12.S.21 (Continuation of 12.S.20) The following are
summary statistics for the Selenium data in Exercise
12.S.20.

(a) Calculate the regression line of Tooth Selenium on
Liver Selenium.

(b) Compute a 95% confidence interval for the slope of
the regression line.

(c) Interpret the interval computed in part (b) in the
context of the problem.

(d) Using the interval computed in part (b), is it
reasonable to believe that the slope is as small as
0.25 (ng/g)/(�g/g)?

12.S.22 (Continuation of 12.S.20 and 12.S.21) Referring
to the data plotted in Exercise 12.S.20, which of the
following is a residual plot resulting from fitting the
regression line in Exercise 12.S.21, part (a)? Justify your
choice.

r = 0.53726 SS(resid) = 17,573.3

sX = 13.4489             sY = 36.0586

xq = 20.684  yq = 156.599

WHALE

LIVER
SE

(�g/g)

TOOTH 
SE

(ng/g) WHALE

LIVER
SE

(�g/g)

TOOTH 
SE

(ng/g)

1 6.23 140.16 11 15.28 112.63

2 6.79 133.32 12 18.68 245.07

3 7.92 135.34 13 22.08 140.48

4 8.02 127.82 14 27.55 177.93

5 9.34 108.67 15 32.83 160.73

6 10.00 146.22 16 36.04 227.60

7 10.57 131.18 17 37.74 177.69

8 11.04 145.51 18 40.00 174.23

9 12.36 163.24 19 41.23 206.30

10 14.53 136.55 20 45.47 141.31
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12.S.23 (Continuation of 12.S.20) The whales observed
in this study were harvested during a traditional Inuit
hunt in two particular years. What are we assuming about
the captured whales to justify our analyses of these data
in the preceding problems?


